In this paper, a sufficient condition for stability of a system of nonlinear multi-fractional order differential equations on a finite time interval with an illustrative example, has been presented to demonstrate our result. Also, an idea to extend our result on such system on an infinite time interval is suggested.
In this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.
Some nonlinear differential equations with fractional order are evaluated using a novel approach, the Sumudu and Adomian Decomposition Technique (STADM). To get the results of the given model, the Sumudu transformation and iterative technique are employed. The suggested method has an advantage over alternative strategies in that it does not require additional resources or calculations. This approach works well, is easy to use, and yields good results. Besides, the solution graphs are plotted using MATLAB software. Also, the true solution of the fractional Newell-Whitehead equation is shown together with the approximate solutions of STADM. The results showed our approach is a great, reliable, and easy method to deal with specific problems in
... Show MoreThis paper constructs a new linear operator associated with a seven parameters Mittag-Leffler function using the convolution technique. In addition, it investigates some significant second-order differential subordination properties with considerable sandwich results concerning that operator.
In this study, a brand-new double transform known as the double INEM transform is introduced. Combined with the definition and essential features of the proposed double transform, new findings on partial derivatives, Heaviside function, are also presented. Additionally, we solve several symmetric applications to show how effective the provided transform is at resolving partial differential equation.
The main purpose of this paper, is to characterize new admissible classes of linear operator in terms of seven-parameter Mittag-Leffler function, and discuss sufficient conditions in order to achieve certain third-order differential subordination and superordination results. In addition, some linked sandwich theorems involving these classes had been obtained.
This paper is illustrates the sufficient conditions of the uniformly asymptotically stable and the bounded of the zero solution of fifth order nonlinear differential equation with a variable delay τ(t)
The Caputo definition of fractional derivatives introduces solution to the difficulties appears in the numerical treatment of differential equations due its consistency in differentiating constant functions. In the same time the memory and hereditary behaviors of the time fractional order derivatives (TFODE) still common in all definitions of fractional derivatives. The use of properties of companion matrices appears in reformulating multilevel schemes as generalized two level schemes is employed with the Gerschgorin disc theorems to prove stability condition. Caputo fractional derivatives with finite difference representations is considered. Moreover the effect of using the inverse operator which tr
This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show More