In this paper, we introduce a class of operators on a Hilbert space namely quasi-posinormal operators that contain properly the classes of normal operator, hyponormal operators, M–hyponormal operators, dominant operators and posinormal operators . We study some basic properties of these operators .Also we are looking at the relationship between invertibility operator and quasi-posinormal operator .
Sequences spaces , m , p have called quasi-Sobolev spaces were introduced by Jawad . K. Al-Delfi in 2013 [1]. In this paper , we deal with notion of quasi-inner product space by using concept of quasi-normed space which is generalized to normed space and given a relationship between pre-Hilbert space and a quasi-inner product space with important results and examples. Completeness properties in quasi-inner product space gives us concept of quasi-Hilbert space . We show that , not all quasi-Sobolev spa
... Show MoreThe main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
In this work, the notion of principally quasi- injective semimodule is introduced, discussing the conditions needed to get properties and characterizations similar or related to the case in modules.
Let be an -semimodule with endomorphism semiring Ș. The semimodule is called principally quasi-injective, if every -homomorphism from any cyclic subsemimodule of to can be extended to an endomorphism of .
In this paper, we introduce and study the notation of approximaitly quasi-primary submodules of a unitary left -module over a commutative ring with identity. This concept is a generalization of prime and primary submodules, where a proper submodule of an -module is called an approximaitly quasi-primary (for short App-qp) submodule of , if , for , , implies that either or , for some . Many basic properties, examples and characterizations of this concept are introduced.
in this paper we adopted ways for detecting edges locally classical prewitt operators and modification it are adopted to perform the edge detection and comparing then with sobel opreators the study shows that using a prewitt opreators
Throughout this paper we study the properties of the composition operator
C
p1 o
p2 o…o
pn induced by the composition of finite numbers of special
automorphisms of U,
pi (z) i
i
p z
1 p z
Such that pi U, i 1, 2, …, n, and discuss the relation between the product of
finite numbers of automorphic composition operators on Hardy space H2 and some
classes of operators.
Artificial fish swarm algorithm (AFSA) is one of the critical swarm intelligent algorithms. In this
paper, the authors decide to enhance AFSA via diversity operators (AFSA-DO). The diversity operators will
be producing more diverse solutions for AFSA to obtain reasonable resolutions. AFSA-DO has been used to
solve flexible job shop scheduling problems (FJSSP). However, the FJSSP is a significant problem in the
domain of optimization and operation research. Several research papers dealt with methods of solving this
issue, including forms of intelligence of the swarms. In this paper, a set of FJSSP target samples are tested
employing the improved algorithm to confirm its effectiveness and evaluate its ex
In this work we shall introduce the concept of weakly quasi-prime modules and give some properties of this type of modules.
Let R be a commutative ring with identity, and W be a unital (left) R-module. In this paper we introduce and study the concept of a quasi-small prime modules as generalization of small prime modules.
Let R be a commutative ring with unity. In this paper we introduce and study the concept of strongly essentially quasi-Dedekind module as a generalization of essentially quasiDedekind module. A unitary R-module M is called a strongly essentially quasi-Dedekind module if ( , ) 0 Hom M N M for all semiessential submodules N of M. Where a submodule N of an R-module M is called semiessential if , 0  pN for all nonzero prime submodules P of M .