Preferred Language
Articles
/
bsj-1100
Volterra Runge- Kutta Methods for Solving Nonlinear Volterra Integral Equations

In this paper Volterra Runge-Kutta methods which include: method of order two and four will be applied to general nonlinear Volterra integral equations of the second kind. Moreover we study the convergent of the algorithms of Volterra Runge-Kutta methods. Finally, programs for each method are written in MATLAB language and a comparison between the two types has been made depending on the least square errors.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
The Continuous Classical Boundary Optimal Control of Triple Nonlinear Elliptic Partial Differential Equations with State Constraints

    Our aim in this work is to study the classical continuous boundary control vector  problem for triple nonlinear partial differential equations of elliptic type involving a Neumann boundary control. At first, we prove that the triple nonlinear partial differential equations of elliptic type with a given classical continuous boundary control vector have a unique "state" solution vector,  by using the Minty-Browder Theorem. In addition, we prove the existence of a classical continuous boundary optimal control vector ruled by the triple nonlinear partial differential equations of elliptic type with equality and inequality constraints. We study the existence of the unique solution for the triple adjoint equations

... Show More
Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jul 01 2018
Journal Name
Computers & Mathematics With Applications
Crossref (19)
Crossref
View Publication
Publication Date
Sun Sep 01 2019
Journal Name
Gazi University Journal Of Science
Reliable Iterative Methods for Solving Convective Straight and Radial Fins with Temperature-Dependent Thermal Conductivity Problems

In our article, three iterative methods are performed to solve the nonlinear differential equations that represent the straight and radial fins affected by thermal conductivity. The iterative methods are the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM) to get the approximate solutions. For comparison purposes, the numerical solutions were further achieved by using the fourth Runge-Kutta (RK4) method, Euler method and previous analytical methods that available in the literature. Moreover, the convergence of the proposed methods was discussed and proved. In addition, the maximum error remainder values are also evaluated which indicates that the propo

... Show More
Crossref (5)
Crossref
View Publication
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
Solving Whitham-Broer-Kaup-Like Equations Numerically by using Hybrid Differential Transform Method and Finite Differences Method

This paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.

Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
International Journal Of Mathematics Trends And Technology (ijmtt)
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
New Approach for Calculate Exponential Integral Function

     This manuscript presents a new approach to accurately calculating exponential integral function that arises in many applications such as contamination, groundwater flow, hydrological problems and mathematical physics. The calculation is obtained with easily computed components without any restrictive assumptions

     A detailed comparison of the execution times is performed. The calculated results by the suggested approach are better and faster accuracy convergence than those calculated by other methods. Error analysis of the calculations is studied using the absolute error and high convergence is achieved. The suggested approach out-performs all previous methods  used to calculate this function and this decision is

... Show More
Scopus (4)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Numerical and Analytical Solutions of Space-Time Fractional Partial Differential Equations by Using a New Double Integral Transform Method

  This work discusses the beginning of fractional calculus and how the Sumudu and Elzaki transforms are applied to fractional derivatives. This approach combines a double Sumudu-Elzaki transform strategy to discover analytic solutions to space-time fractional partial differential equations in Mittag-Leffler functions subject to initial and boundary conditions. Where this method gets closer and closer to the correct answer, and the technique's efficacy is demonstrated using numerical examples performed with Matlab R2015a.

Scopus (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
The Continuous Classical Optimal Control of a Couple Nonlinear Hyperbolic Partial Differential Equations with Equality and Inequality Constraints

This paper is concerned with the existence of a unique state vector solution of a couple nonlinear hyperbolic equations using the Galerkin method when the continuous classical control vector is given, the existence theorem of a continuous classical optimal control vector with equality and inequality vector state constraints is proved, the existence of a unique solution of the adjoint equations associated with the state equations is studied. The Frcéhet derivative of the Hamiltonian is obtained. Finally the theorems of the necessary conditions and the sufficient conditions of optimality of the constrained problem are proved.

View Publication Preview PDF
Publication Date
Mon Jan 27 2020
Journal Name
Iraqi Journal Of Science
Blow-up Rate Estimates and Blow-up Set for a System of Two Heat Equations with Coupled Nonlinear Neumann Boundary Conditions

This paper deals with the blow-up properties of positive solutions to a parabolic system of two heat equations, defined on a ball in  associated with coupled Neumann boundary conditions of exponential type. The upper bounds of blow-up rate estimates are derived. Moreover, it is proved that the blow-up in this problem can only occur on the boundary.

Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Nonlinear optical properties of synthesized porous nanostructures PMMA via template-directed methods

Colloidal crystals (opals) made of close-packed polymethylmethacrylate (PMMA) were fabricated and grown by Template-Directed methods to obtain porous materials with well-ordered periodicity and interconnected pore systems to manufacture photonic crystals. Opals were made from aqueous suspensions of monodisperse PMMA spheres with diameters between 280 and 415 nm. SEM confirmed the PMMA spheres crystallized uniformly in a face-centered cubic (FCC) array. Optical properties of synthesized pores PMMA were characterized by UV–Visible spectroscopy. It shows that the colloidal crystals possess pseudo photonic band gaps in the visible region. A combination of Bragg’s law of diffraction and Snell’s law of refraction were used to calculate t

... Show More
Crossref
View Publication Preview PDF