In this paper Volterra Runge-Kutta methods which include: method of order two and four will be applied to general nonlinear Volterra integral equations of the second kind. Moreover we study the convergent of the algorithms of Volterra Runge-Kutta methods. Finally, programs for each method are written in MATLAB language and a comparison between the two types has been made depending on the least square errors.
Our aim in this work is to study the classical continuous boundary control vector problem for triple nonlinear partial differential equations of elliptic type involving a Neumann boundary control. At first, we prove that the triple nonlinear partial differential equations of elliptic type with a given classical continuous boundary control vector have a unique "state" solution vector, by using the Minty-Browder Theorem. In addition, we prove the existence of a classical continuous boundary optimal control vector ruled by the triple nonlinear partial differential equations of elliptic type with equality and inequality constraints. We study the existence of the unique solution for the triple adjoint equations
... Show MoreIn our article, three iterative methods are performed to solve the nonlinear differential equations that represent the straight and radial fins affected by thermal conductivity. The iterative methods are the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM) to get the approximate solutions. For comparison purposes, the numerical solutions were further achieved by using the fourth Runge-Kutta (RK4) method, Euler method and previous analytical methods that available in the literature. Moreover, the convergence of the proposed methods was discussed and proved. In addition, the maximum error remainder values are also evaluated which indicates that the propo
... Show MoreThis paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.
This manuscript presents a new approach to accurately calculating exponential integral function that arises in many applications such as contamination, groundwater flow, hydrological problems and mathematical physics. The calculation is obtained with easily computed components without any restrictive assumptions
A detailed comparison of the execution times is performed. The calculated results by the suggested approach are better and faster accuracy convergence than those calculated by other methods. Error analysis of the calculations is studied using the absolute error and high convergence is achieved. The suggested approach out-performs all previous methods used to calculate this function and this decision is
... Show MoreThis work discusses the beginning of fractional calculus and how the Sumudu and Elzaki transforms are applied to fractional derivatives. This approach combines a double Sumudu-Elzaki transform strategy to discover analytic solutions to space-time fractional partial differential equations in Mittag-Leffler functions subject to initial and boundary conditions. Where this method gets closer and closer to the correct answer, and the technique's efficacy is demonstrated using numerical examples performed with Matlab R2015a.
This paper is concerned with the existence of a unique state vector solution of a couple nonlinear hyperbolic equations using the Galerkin method when the continuous classical control vector is given, the existence theorem of a continuous classical optimal control vector with equality and inequality vector state constraints is proved, the existence of a unique solution of the adjoint equations associated with the state equations is studied. The Frcéhet derivative of the Hamiltonian is obtained. Finally the theorems of the necessary conditions and the sufficient conditions of optimality of the constrained problem are proved.
This paper deals with the blow-up properties of positive solutions to a parabolic system of two heat equations, defined on a ball in associated with coupled Neumann boundary conditions of exponential type. The upper bounds of blow-up rate estimates are derived. Moreover, it is proved that the blow-up in this problem can only occur on the boundary.
Colloidal crystals (opals) made of close-packed polymethylmethacrylate (PMMA) were fabricated and grown by Template-Directed methods to obtain porous materials with well-ordered periodicity and interconnected pore systems to manufacture photonic crystals. Opals were made from aqueous suspensions of monodisperse PMMA spheres with diameters between 280 and 415 nm. SEM confirmed the PMMA spheres crystallized uniformly in a face-centered cubic (FCC) array. Optical properties of synthesized pores PMMA were characterized by UV–Visible spectroscopy. It shows that the colloidal crystals possess pseudo photonic band gaps in the visible region. A combination of Bragg’s law of diffraction and Snell’s law of refraction were used to calculate t
... Show More