Preferred Language
Articles
/
bRfWXJMBVTCNdQwC29Le
Comparative study of logistic regression and artificial neural networks on predicting breast cancer cytology
...Show More Authors

<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver operating characteristic ROC).   Dataset was downloaded from UCI ml repository; it is composed of 9 attributes and 699 samples. The findings are clearly showing that the RBF NN classifier is the best in prediction of the type of breast tumors since it had recorded the highest performance in terms of correct classification rate (accuracy), sensitivity, specificity, and AUC (area under Receiver Operating Characteristic ROC) among all other models.</p>

Scopus Crossref
View Publication
Publication Date
Fri Jun 01 2007
Journal Name
Journal Of Al-nahrain University Science
ON THE GREEDY RADIAL BASIS FUNCTION NEURAL NETWORKS FOR APPROXIMATION MULTIDIMENSIONAL FUNCTIONS
...Show More Authors

The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Aug 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
(Structure Logistic Regression Model Of Anomalies Birth In Iraq Except Kurdistan Region, for 2015)
...Show More Authors

Congenital anomalies commonly occur in humans, possibly visible. If these anomalies appear in visible parts in human body such as face, hands and feet. They may only appear after utilizing a number of special tests in order to show by means of the anomalies that occur in the internal organs of the body such as heart, stomach and kidneys.

    Research data have comprised accessible information in the anomalies birth statistics form situated of Health and Life Statistics section at the Ministry of Health and environment, where the number of anomalies births involved in the study (2603 anomalies birth) in Iraq, except Kurdistan region, at 2015. A two way-response logistic regression analysis h

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Nov 19 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Use of Logistic Regression Approach to Determine the Effective Factors Causing Renal Failure Disease
...Show More Authors

    The main goal of this research is to determine the impact of some variables that we believe that they are important to cause renal failuredisease by using logistic regression approach.The study includes eight explanatory variables and the response variable represented by (Infected,uninfected).The statistical program SPSS is used to proform the required calculations

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Artificial Neural Network for TIFF Image Compression
...Show More Authors

The main aim of image compression is to reduce the its size to be able for transforming and storage, therefore many methods appeared to compress the image, one of these methods is "Multilayer Perceptron ". Multilayer Perceptron (MLP) method which is artificial neural network based on the Back-Propagation algorithm for compressing the image. In case this algorithm depends upon the number of neurons in the hidden layer only the above mentioned will not be quite enough to reach the desired results, then we have to take into consideration the standards which the compression process depend on to get the best results. We have trained a group of TIFF images with the size of (256*256)  in our research, compressed them by using MLP for each

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
FILTRATION MODELING USING ARTIFICIAL NEURAL NETWORK (ANN)
...Show More Authors

In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
A Comparative Study on the Active Constituents, Antioxidant Capacity and Anti-Cancer Activity of Cruciferous Vegetable Residues
...Show More Authors

This study is pointed out to estimate the effectiveness of two solvents in the extraction and evaluating the active ingredients and their antioxidant activity as well as anti-cancer efficiency. Therefore, residues from four different Brassica vegetables viz. broccoli, Brussels sprout, cauliflower, and red cherry radish were extracted using two procedures methods: methanolic and water crude extracts. Methanol extracts showed the highest content of total phenolic (TP), total flavonoids (TF), and total tannins (TT) for broccoli and Brussels sprouts residues. Methanolic extract of broccoli and Brussels sprouts residues showed the highest DPPH· scavenging activity (IC50 = 15.39 and 18.64 µg/ml). The methanol and water ex

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Dec 12 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Relationship between General and Spinal Anesthesia and Its Impact upon Breast Feeding: Comparative Study
...Show More Authors

Objective: To identified the relationship between general and spinal Anesthesia upon breastfeeding and (demographic &reproductive) : Comparative Study. Methodology: The present study employs a descriptive comparative design held at the labor and delivery room , operational room for cesarean section and maternity word in maternity department at Al Emamain Al Kadhamain Medical City in Baghdad city. Data collection was initiated on 2nd January to end of March /2014. Purposive sample consisted of (150) mother and her neonate, The study sample divided into three groups:(50) under general anesthesia , (50) under

... Show More
View Publication Preview PDF
Publication Date
Mon Nov 11 2019
Journal Name
Spe
Modeling Rate of Penetration using Artificial Intelligent System and Multiple Regression Analysis
...Show More Authors
Abstract<p>Over the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.</p><p>The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame</p> ... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sun Jan 05 2025
Journal Name
Science Journal Of University Of Zakho
DETECTION AND RECOGNITION OF IRAQI LICENSE PLATES USING CONVOLUTIONAL NEURAL NETWORKS
...Show More Authors

Due to the large population of motorway users in the country of Iraq, various approaches have been adopted to manage queues such as implementation of traffic lights, avoidance of illegal parking, amongst others. However, defaulters are recorded daily, hence the need to develop a mean of identifying these defaulters and bring them to book. This article discusses the development of an approach of recognizing Iraqi licence plates such that defaulters of queue management systems are identified. Multiple agencies worldwide have quickly and widely adopted the recognition of a vehicle license plate technology to expand their ability in investigative and security matters. License plate helps detect the vehicle's information automatically ra

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison Between Classic Local Least Estimatop And Bayesian Methoid For Estimating Semiparametric Logistic Regression Model
...Show More Authors

Semi-parametric models analysis is one of the most interesting subjects in recent studies due to give an efficient model estimation. The problem when the response variable has one of two values either 0 ( no response) or one – with response which is called the logistic regression model.

We compare two methods Bayesian and . Then the results were compared using MSe criteria.

A simulation had been used to study the empirical behavior for the Logistic model , with  different sample sizes and variances. The results using represent that the Bayesian method is better than the   at small samples sizes.

... Show More
View Publication Preview PDF
Crossref