<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver operating characteristic ROC). Dataset was downloaded from UCI ml repository; it is composed of 9 attributes and 699 samples. The findings are clearly showing that the RBF NN classifier is the best in prediction of the type of breast tumors since it had recorded the highest performance in terms of correct classification rate (accuracy), sensitivity, specificity, and AUC (area under Receiver Operating Characteristic ROC) among all other models.</p>
Background: Breast cancer composed of several biologic subtypes that have response to hormonal therapy. Tamoxifen is hormonal therapy with tissue- pecific antagonistic or agonist effects, the latter being responsible for multiple effects on lipid metabolism in women .
Objective: This study was designed to determine the impact of Tamoxifen on the serum lipid profile in breast cancer women.
Patients and methods: Prospective observation cohort study conducted at Oncology Teaching Hospital, Medical city complx.starting from October 2015 to October 2016. A total number of 40 premenopausal women with breast cancer were enrolled in this
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
A cervical screening by Pap test is necessary in recognizing precancerous and cancerous cases to reduce mortality due to cervical cancer among women. Regular screening and follow up can make it easier to early diagnose and eventually, to treat and control cervical cancer.
This study aimed to detect atypical pathological changes of the vagina and uterine cervix of a sample of Iraqi women by macro- and micro-examination, and to determine the link with the demographic features. Also the study aimed to evaluate the two Pap smear techniques; the conventional and the base liquid methods.
The study included 50 women with genital health problems (18-50 years old) who were referred to&nb
... Show MoreBackground: Breast Cancer is the commonest type of malignancy in Iraq. The Iraqi Cancer Registry displays an obvious trend for the disease to affect younger women with advanced stages at the time of presentation. This report presents a review on the main demographic characteristics and clinicopathological parameters in Iraqi patients diagnosed with breast cancer.
Patients & Methods: The study was carried out on 721 out of a total of 5044 patients (14.3%) who complained of palpable breast lumps that were diagnosed as cancer. The procedure for tumor nuclear DNA Ploidy assessment was performed by means of Image Cytometry. Immuno-cytochemical and histochemical assays were applied for the determination of
Semi-parametric models analysis is one of the most interesting subjects in recent studies due to give an efficient model estimation. The problem when the response variable has one of two values either 0 ( no response) or one – with response which is called the logistic regression model.
We compare two methods Bayesian and . Then the results were compared using MSe criteria.
A simulation had been used to study the empirical behavior for the Logistic model , with different sample sizes and variances. The results using represent that the Bayesian method is better than the at small samples sizes.
... Show MoreThe logistic regression model regarded as the important regression Models ,where of the most interesting subjects in recent studies due to taking character more advanced in the process of statistical analysis .
The ordinary estimating methods is failed in dealing with data that consist of the presence of outlier values and hence on the absence of such that have undesirable effect on the result. &nbs
... Show MoreIn this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal
... Show MoreThe Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from
... Show MoreArtificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show MoreThis study is pointed out to estimate the effectiveness of two solvents in the extraction and evaluating the active ingredients and their antioxidant activity as well as anti-cancer efficiency. Therefore, residues from four different Brassica vegetables viz. broccoli, Brussels sprout, cauliflower, and red cherry radish were extracted using two procedures methods: methanolic and water crude extracts. Methanol extracts showed the highest content of total phenolic (TP), total flavonoids (TF), and total tannins (TT) for broccoli and Brussels sprouts residues. Methanolic extract of broccoli and Brussels sprouts residues showed the highest DPPH· scavenging activity (IC50 = 15.39 and 18.64 µg/ml). The methanol and water ex
... Show More