<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver operating characteristic ROC). Dataset was downloaded from UCI ml repository; it is composed of 9 attributes and 699 samples. The findings are clearly showing that the RBF NN classifier is the best in prediction of the type of breast tumors since it had recorded the highest performance in terms of correct classification rate (accuracy), sensitivity, specificity, and AUC (area under Receiver Operating Characteristic ROC) among all other models.</p>
This paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).
Discriminant between groups is one of the common procedures because of its ability to analyze many practical phenomena, and there are several methods can be used for this purpose, such as linear and quadratic discriminant functions. recently, neural networks is used as a tool to distinguish between groups.
In this paper the simulation is used to compare neural networks and classical method for classify observations to group that is belong to, in case of some variables that don’t follow the normal distribution. we use the proportion of number of misclassification observations to the all observations as a criterion of comparison.
This paper presents a proposed neural network algorithm to solve the shortest path problem (SPP) for communication routing. The solution extends the traditional recurrent Hopfield architecture introducing the optimal routing for any request by choosing single and multi link path node-to-node traffic to minimize the loss. This suggested neural network algorithm implemented by using 20-nodes network example. The result shows that a clear convergence can be achieved by 95% valid convergence (about 361 optimal routes from 380-pairs). Additionally computation performance is also mentioned at the expense of slightly worse results.
Breast cancer is the most common malignancy in female and the most registered cause of women’s mortality worldwide. BI-RADS 4 breast lesions are associated with an exceptionally high rate of benign breast pathology and breast cancer, so BI-RADS 4 is subdivided into 4A, 4B and 4C to standardize the risk estimation of breast lesions. The aim of the study: to evaluate the correlation between BI-RADS 4 subdivisions 4A, 4B & 4C and the categories of reporting FNA cytology results. A case series study was conducted in the Oncology Teaching Hospital in Baghdad from September 2018 to September 2019. Included patients had suspicious breast findings and given BI-RADS 4 (4A, 4B, or 4C) in the radiological report accordingly. Fine needle aspirati
... Show MoreMixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variab
... Show MoreAbstract
The research examined with the importance banking merger to address the situation of Troubled banks in Iraq, Through The use of Logistic Regression Model. . The study attempted to present a conceptual aspect of banking merger and logistic regression, as well as the applied aspect which includes a sample consisting of six private Iraqi banks, and the hypothesis of the study is that the promotion of mergers among banks has positive impacts on improving the efficiency of performance of troubled banks, which contributes to the increase of banking services, raise of their financial indicators and the high liquidity and profits of the new banking entity as it is a way to overcome the prevailing banking crises.
... Show MoreThe aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
In this paper, the fuzzy logic and the trapezoidal fuzzy intuitionistic number were presented, as well as some properties of the trapezoidal fuzzy intuitionistic number and semi- parametric logistic regression model when using the trapezoidal fuzzy intuitionistic number. The output variable represents the dependent variable sometimes cannot be determined in only two cases (response, non-response)or (success, failure) and more than two responses, especially in medical studies; therefore so, use a semi parametric logistic regression model with the output variable (dependent variable) representing a trapezoidal fuzzy intuitionistic number.
the model was estimated on simulati
... Show MoreCongenital anomalies commonly occur in humans, possibly visible. If these anomalies appear in visible parts in human body such as face, hands and feet. They may only appear after utilizing a number of special tests in order to show by means of the anomalies that occur in the internal organs of the body such as heart, stomach and kidneys.
Research data have comprised accessible information in the anomalies birth statistics form situated of Health and Life Statistics section at the Ministry of Health and environment, where the number of anomalies births involved in the study (2603 anomalies birth) in Iraq, except Kurdistan region, at 2015. A two way-response logistic regression analysis h
... Show MoreThe main goal of this research is to determine the impact of some variables that we believe that they are important to cause renal failuredisease by using logistic regression approach.The study includes eight explanatory variables and the response variable represented by (Infected,uninfected).The statistical program SPSS is used to proform the required calculations