Endophytic fungi live inside plants or any part of them without creating any visible pathogenic signs. Endophytic fungi are found within medicinal plants and have shown strong biologic activity, such as anticancer and antioxidant activities, as well as producing extracellular enzymes. In this study, different fungal strains were isolated from the leaves of the medicinal plant Ziziphus spina, including Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Cladosporium sp., Rhizopus sp., and Mucor sp. Extracellular enzymes have been quantified using agar plate-based methods in which fungi were grown in specified growth media to detect the enzymes produced. The results showed that A. niger has the highest ability to produce amylase, Cladosporium sp. has the highest ability to produce protease and pectinase, Rhizopus and Mucor sp. have the highest ability to produce cellulase, and A. niger and Cladosporium sp. have the same ability to produce lipase and laccase. The ability of medicinal plant endophytic fungi to produce extracellular enzymes has great therapeutic potential in clinical microbiology. Some of the isolates showed great activity in secreting particular enzymes, indicating that the enzymes of these fungi could be used in a variety of applications.
In this work, the annual behavior of critical frequency and electron density parameters of the ionosphere have been studied for the years (1989, 2001 and 2014) and (1986, 1996 and 2008) which represent the maximum and minimum of years in the solar cycles (22, 23 and 24) respectively. The annual behavior of (Ne, fo ) parameters have been investigated for different heights of Ionosphere layer (100 -1000) Km. The dataset was created both of critical frequency and electron density parameters by using the international reference ionosphere model (IRI-2016 model). This study showed result that during the maximum solar cycles the values of the (Ne) parameter change with
Background: The mechanical properties of 3D-printed denture base resins are crucial factors for determining the quality and performance of dentures inside a patient’s mouth. Tensile strength and diametral compressive strength are two properties that could play significant roles in assessing the suitability of a material. Although they measure different aspects of material behavior, a conceptual link exists between them in terms of overall material strength and resilience. Aim: This study aims to investigate the correlation between tensile strength and diametral compressive strength after incorporating 2% ZrO2 nanoparticles (NPs) by weight into 3D-printed denture base resin. Methods: A total of 40 specimens (20 dumbbell-shaped and
... Show MoreIn this paper, we study the impact of the variable rotation and different variable on mixed convection peristaltic flow of incompressible viscoplastic fluid. This is investigated in two dimensional asymmetric channel, such as the density, viscosity, rate flow, Grashof number, Bingham number, Brinkman number and tapered, on the mixed convection heat transfer analysis for the peristaltic transport of viscoplastic fluid with consideration small Reynolds number and long wavelength, peristaltic transport in asymmetric channel tapered horizontal channel and non-uniform boundary walls to possess different amplitude wave and phases. Perturbation technique is used to get series solutions. The effects of different values of these parame
... Show MoreThe method of analysis is one of the tools the coach to identify strengths andweaknesses of each player, and how to avoid mistakes that in the course ofperformance on the other hand, Voslob analysis is important for the player, as throughthe analysis will determine the capacity enjoyed by both the coach and player, as wellas being the possibility of progress in a scientific manner thoughtful, and also helps inthe evaluation of physical and skill level and tactical, psychological and trainingcapacity of the coach in order to avoid obstacles and make the coach is movingtowards the right track to improve the good level, and then an investigation tocomplete higher education.Hence the importance of research in the analysis of simple attack and n
... Show MoreThis research deals with the effect of gallium oxide and cerium oxide as dopants on the structural and optical characteristics of tin oxide. Gallium and cerium oxide doped tin oxide was prepared with different doping concentrations (0, 0.03, 0.05 and 0.07) wt. pure and doped tin oxide thin films were prepared by the pulsed laser deposition technique. X-ray diffraction and UV-Visible spectrophotometer were employed to investigate both oxides doping effects. Results showed that all prepared samples have poly-crystalline structure with a preferred plane of crystal growth along (110), where the crystal size grew from 40.3 nm to 64.5 nm and to 43.5 nm for Ga2O3 and CeO2 doped tin oxide thin films, res
... Show MoreIn this work, (CdO)1-x (CoO)x thin films were prepared on glass slides by laser-induced plasma using Nd:YAG laser with (λ=1064 nm) and duration (9 ns) at different laser energies (200-500 mJ) with ratio (x=0.5), The influence of laser energy on structural and optical properties has been studied. XRD patterns show the films have a structure of polycrystalline wurtzite. As for AFM tests results for the topography of the surface of the film, where the results showed that the grain size and the average roughness increase with increasing laser energy. The optical properties of all films were also studied and the results showed that the absorption coefficient for within the wavelength range (280-1100 nm), The value of the optical power gap fo
... Show MoreCZTS / CdS / ZnO / ITO solar cell was studied using Solar Cell Capacitance Simulato-1D (SCAPS-1D) program. We performed an improvement on the theoretical cell by increasing the doping and thickness of some layers. As a result, the efficiency was shifted from 2.18% to 6.17% and several back reflection layers (BSL) were introduced on the enhanced cell until. We obtained a highest conversion efficiency of 13.99%. The best reflection layer (CZTSSe) was combined with the best buffer layer (CdSe), with thickness of 0.9µm, on the enhanced cell. Thereby, we obtained a cell with a conversion efficiency of 16.53%. A second improvement was made to the best obtained cell, where the CZTSSe with thickness of 0.05µm and the CdSe with thickness
... Show MoreThis research has presented a solution to the problem faced by alloys: the corrosion problem, by reducing corrosion and enhancing protection by using an inhibitor (Schiff base). The inhibitor (Schiff base) was synthesized by reacting of the substrates materials (4-dimethylaminobenzaldehyde and 4-aminoantipyrine). It was diagnosed by infrared technology IR, where the IR spectrum and through the visible beams proved that the Schiff base was well formed and with high purity. The corrosion behavior of carbon steel and stainless steel in a saline medium (artificial seawater 3.5%NaCl) before and after using the inhibitor at four temperatures: 20, 30, 40, and 50 C° was studied by using three electrodes potentiostat. The corrosion behavior was
... Show MoreNumerous tests are recently conducted to assess vibration's role in accelerating the heat transfer rate in various heat exchangers. In this work, the enhancement of heat transfer by the effect of transfer vibration and inclination angles on the surface of a double pipe heat exchanger experimentally has been investigated. A data acquisition system is applied to record the data of temperatures, flow rates, and frequencies over the tests. A compound technique was adopted, including the application of a set of inclination angles of (0°, 10°, 20°, and 30°) under the effect of frequency of vibration ranging from sub-resonance to over-resonance frequencies. The results showed that the overall heat transfer coefficient enhan
... Show More