With the spread of globalization, the need for translators and scholars has grown, as translation is the only process that helps bridge linguistic gaps. Following the emergence of artificial intelligence (AI), a strong competitor has arisen to the translators, sweeping through all scientific and professional fields, including translation sector, with a set of tools that aid in the translation process. The current study aims to investigate the capability of AI tools in translating texts rich in cultural variety from one language to another, specifically focusing on English-Arabic translations, through qualitative analysis to uncover cultural elements in the target language and determine the ability of AI tools to preserve, lose, or alter them. Two AI translation tools were used (Spider-AI and Matacate), which revealed the success of AI tools in the translation process of linguistic aspect, through producing accurate and fluent translations that capture the general meaning of the texts. However, they were unable to convey subtle nuances and cultural characteristics, resulting in some gaps in the cultural aspect of the target language. The study emphasized the importance of the cultural aspect during the process of transferring meaning in translation. Therefore, it focused on the significance of collaboration between human translators and AI translation tools, to get better results.at the end the study concluded with the importance of continuing scientific research for updating AI translation tools, to create systems that are both technologically advanced and culturally sensitive.
This article deals with the impact of including transverse ribs within the absorber tube of the concentrated linear Fresnel collector (CLFRC) system with a secondary compound parabolic collector (CPC) on thermal and flow performance coefficients. The enhancement rates of heat transfer due to varying governing parameters were compared and analyzed parametrically at Reynolds numbers in the range 5,000–13,000, employing water as the heat transfer fluid. Simulations were performed to solve the governing equations using the finite volume method (FVM) under various boundary conditions. For all Reynolds numbers, the average Nusselt number in the circular tube in the CLFRC system with ribs was found to be larger than that of the plain abs
... Show MoreThe new bidentate ligand 2-amino-5-phenyl-1,3,4-oxadiazole (Apods) was prepared by the reaction of benzaldehyde semicarbazone with bromine and sodium acetate in acetic acid gave. The prepared ligand was identified by Microelemental Analysis, FT.IR, UV-Vis and 1HNMR spectroscopic techniqes. Treatment of the prepared ligand with the following selected metal ions (MnII, CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio, yielded a series of complexes of the general formula [M(L)2Cl2].The prepared complexes were characterized using flame atomic absorption, (C.H.N)Analysis, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by Mohr metho
... Show MoreIraqi bentonite is used as main material for preparing ceramic samples with the additions of alumina and magnesia. X-ray diffractions analyses were carried out for the raw material at room temperature. The sequence of mineral phase's transformations of the bentonite for temperatures 1000 ,1100 ,1200 and 1250 ºC reflects that it finally transformed in to mullite 39.18% and cristobalite 62.82%. Samples of different weight constituent were prepared. The effect of its constitutional change reveals through its heat treatments at 1000,1100,1200,1250and 1300ºC .The samples of additions less than 15% of alumina and magnesia could not stand up to 1300ºC while the samples of addition more than 15% are stable .That is shown by analy
... Show MoreTwo different composite materials were prepared by stir casting method of AA 6061 alloy as a matrix reinforced with two addition different ceramic materials Al2O3 and B4C of grain size 20 µm by 2.5, 5, 7.5 and10% in weight. The composite material with aluminum alloy as a matrix possesses a unique mechanical properties such as: high specific strength and hardness, low density, and high resistance to corrosion and friction wear. This composite is widely used in automotive parts space and marine applications.
Pin-on-disc technique was used to calculate the wear rate for each addition of Al2O3 and B4C particles. Rockwell hardness test and
... Show MoreThis paper presents a nonlinear finite element modeling and analysis of steel fiber reinforced concrete (SFRC) deep beams with and without openings in web subjected to two- point loading. In this study, the beams were modeled using ANSYS nonlinear finite element
software. The percentage of steel fiber was varied from 0 to 1.0%.The influence of fiber content in the concrete deep beams has been studied by measuring the deflection of the deep beams at mid- span and marking the cracking patterns, compute the failure loads for each deep beam, and also study the shearing and first principal stresses for the deep beams with and without openings and with different steel fiber ratios. The above study indicates that the location of openings an
The fuzzy assignment models (FAMs) have been explored by various literature to access classical values, which are more precise in our real-life accomplishment. The novelty of this paper contributed positively to a unique application of pentagonal fuzzy numbers for the evaluation of FAMs. The new method namely Pascal's triangle graded mean (PT-GM) has presented a new algorithm in accessing the critical path to solve the assignment problems (AP) based on the fuzzy objective function of minimising total cost. The results obtained have been compared to the existing methods such as, the centroid formula (CF) and centroid formula integration (CFI). It has been demonstrated that operational efficiency of this conducted method is exquisitely develo
... Show More