According to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through the conveyor belt motion. An optimal speed controlling mechanism of the conveyor belt is presented by detecting smartly the parts' number and weights using the vision sensor, where the latter will give sufficient visualization about the system. Then image processing will deliver the important data to ANN, which will optimally decide the best conveyor belt speed. This decided speed will achieve the aim of power saving in belt motion. The proposed controlling system will optimally switch the speed of the conveyor belt system to ON, OFF and idle status in order to minimize the consumption of energy in the conveyor belt. As the conveyor belt is fully loaded it moves at its maximum speed. But if the conveyor is partially loaded, the speed will be adjusted accordingly by the ANN. If no loading existed, the conveyor will be stopped. By this way, a very significant energy amount in addition to cost will be saved. The developed conveyor belt system will modernize industrial manufacturing lines, besides reducing energy consumption and cost and increasing the conveyor belts lifetime
With the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil’s mutual displacement and coupling coef
... Show MoreEight patients (3 male and 5 female) were treated in this study by Endovenous Laser Ablation (EVLA); Mathematical models are proposed to estimate the applied laser power and to assess the recovery period. The estimations of the applied laser power and recovery period in these models will be depended mainly on the diameter of the incompetent vein. In addition, Excel Program was utilized to find the proposed models. A 1470 nm diode laser up to 15W continuous power (CW) was used in the treatment of venous ulcers by EVLA procedure. Following up by duplex ultrasound was started in the 1st week after the first session until the vein is completely closed. The present study concluded that the relationship both between
... Show Moreحسن السيد عز الدين بحر العلوم العقد الاجتماعي والسلطة الشعبية عند الإمام علي (عليه السلام )
This study uses load factor and loss factor to determine the power losses of the electrical feeders. An approach is presented to calculate the power losses in the distribution system. The feeder’s technical data and daily operation recorded data are used to calculate and analyze power losses.
This paper presents more realistic method for calculating the power losses based on load and loss factors instead of the traditional methods of calculating the power losses that uses the RMS value of the load current which not consider the load varying with respect to the time. Eight 11kV feeders are taken as a case study for our work to calculate load factor, loss factor and power losses. Four of them (F40, F42, F43 and F
... Show MoreStenography is the art of hiding the very presence of communication by embedding secret message into innocuous looking cover document, such as digital image, videos, sound files, and other computer files that contain perceptually irrelevant or redundant information as covers or carriers to hide secret messages.
In this paper, a new Least Significant Bit (LSB) nonsequential embedding technique in wave audio files is introduced. To support the immunity of proposed hiding system, and in order to recover some weak aspect inherent with the pure implementation of stego-systems, some auxiliary processes were suggested and investigated including the use of hidden text jumping process and stream ciphering algorithm. Besides, the suggested
... Show MoreThe primary objective of this paper is to improve a biometric authentication and classification model using the ear as a distinct part of the face since it is unchanged with time and unaffected by facial expressions. The proposed model is a new scenario for enhancing ear recognition accuracy via modifying the AdaBoost algorithm to optimize adaptive learning. To overcome the limitation of image illumination, occlusion, and problems of image registration, the Scale-invariant feature transform technique was used to extract features. Various consecutive phases were used to improve classification accuracy. These phases are image acquisition, preprocessing, filtering, smoothing, and feature extraction. To assess the proposed
... Show MoreThis study proposed a biometric-based digital signature scheme proposed for facial recognition. The scheme is designed and built to verify the person’s identity during a registration process and retrieve their public and private keys stored in the database. The RSA algorithm has been used as asymmetric encryption method to encrypt hashes generated for digital documents. It uses the hash function (SHA-256) to generate digital signatures. In this study, local binary patterns histograms (LBPH) were used for facial recognition. The facial recognition method was evaluated on ORL faces retrieved from the database of Cambridge University. From the analysis, the LBPH algorithm achieved 97.5% accuracy; the real-time testing was done on thirty subj
... Show MoreThe goal of this paper is to design a robust controller for controlling a pendulum
system. The control of nonlinear systems is a common problem that is facing the researchers in control systems design. The Sliding Mode Controller (SMC) is the best solution for controlling a nonlinear system. The classical SMC consists from two phases. The first phase is the reaching phase and the second is the sliding phase. The SMC suffers from the chattering phenomenon which is considered as a severe problem and undesirable property. It is a zigzag motion along the switching surface. In this paper, the chattering is reduced by using a saturation function instead of sign function. In spite of SMC is a good method for controlling a nonlinear system b