Preferred Language
Articles
/
bBYnn4oBVTCNdQwCY6Hx
Commuting Involution Graphs for Certain Exceptional Groups of Lie Type
...Show More Authors
Abstract<p>Suppose that <italic>G</italic> is a finite group and <italic>X</italic> is a <italic>G</italic>-conjugacy classes of involutions. The commuting involution graph <inline-formula><alternatives><tex-math>$${\mathcal {C}}(G,X)$$</tex-math><math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mrow> <mi>C</mi> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mi>X</mi> <mo>)</mo> </mrow> </math></alternatives></inline-formula> is the graph whose vertex set is <italic>X</italic> with <inline-formula><alternatives><tex-math>$$x, y \in X$$</tex-math><math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>∈</mo> <mi>X</mi> </mrow> </math></alternatives></inline-formula> being joined if <inline-formula><alternatives><tex-math>$$x \ne y$$</tex-math><math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mrow> <mi>x</mi> <mo>≠</mo> <mi>y</mi> </mrow> </math></alternatives></inline-formula> and <inline-formula><alternatives><tex-math>$$xy = yx$$</tex-math><math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mrow> <mi>x</mi> <mi>y</mi> <mo>=</mo> <mi>y</mi> <mi>x</mi> </mrow> </math></alternatives></inline-formula>. Here for various exceptional Lie type groups of characteristic two we investigate their commuting involution graphs.</p>
Scopus Clarivate Crossref
View Publication