The annual performance of a hybrid system of a flat plate photovoltaic thermal system and a solar thermal collector (PVT/ST) is numerically analyzed from the energy, exergy, and environmental (CO2 reduction) viewpoints. This system can produce electricity and thermal power simultaneously, with higher thermal power and exergy compared to conventional photovoltaic thermal systems. For this purpose, a 3D transient numerical model is developed for investigating the system's performance in four main steps: (1) investigating the effects of the mass flow rate of the working fluid (20 to 50 kg/h) on the temperature behavior and thermodynamic performance of the system, (2) studying the impacts of using glass covers on the different parts of the system, (3) evaluating the annual energy and exergy analyses of the system under Mashhad weather conditions, and (4) examining the CO2 reduction by using the proposed system. The results show that for the (glazed) PVT and (glazed) ST systems, increasing the mass flow rate of the working fluid from 20 to 50 kg/h results in 22% and 1.5% improvements in both thermal and electrical power, respectively. However, the thermal exergy of the system decreases by 40.1%. Furthermore, the (glazed) PVT/(glazed) ST systems generate approximately 86% and 264% more thermal power and energy than the PVT/ST systems, respectively. Using a (glazed) PVT/(glazed) ST system with a working fluid’s mass flow rate of 50 kg/h results in maximum thermal and electrical efficiencies of 40.7% and 16.22%, respectively. According to the annual analysis, the highest average thermal and electrical power, equal to approximately 338.3 and 24 W, respectively, is produced in August. The amount of CO2 reduction increases by increasing the mass flow rate and using a glass cover. The PVT/(glazed)ST system has the potential to reduce CO2 emissions by 426.3 kg per year.
This paper demonstrates the construction designing analysis and control strategies for fully tracking concentrated solar thermal by using programmable logic control in the city of Erbil-Iraq. This work used the parabolic dish as a concentrated solar thermal. At the focal point, the collected form of energy is used for heating a (water) in the receiver, analyzing this prototype in real-time with two different shapes of the receiver and comparing the results. For tracking the parabolic dish, four light-dependent resistors are used to detect the sun's position in the sky so that the tracking system follows it to make the beam radiation perpendicular to the collector surface all of the time during the day for maximum solar p
... Show MoreThe present study involves experimental analysis of the modified Closed Wet Cooling Tower (CWCT) based on first and second law of thermodynamics, to gain a deeper knowledge in this important field of engineering in Iraq. For this purpose, a prototype of CWCT optimized by added packing under a heat exchanger was designed, manufactured and tested for cooling capacity of 9 kW. Experiments are conducted to explore the effects of various operational and conformational parameters on the towers thermal performance. In the test section, spray water temperature and both dry bulb temperature and relative humidity of air measured at intermediate points of the heat exchanger and packing. Exergy of water and air were calculated by applying the exergy
... Show MoreIn this study, a different design of passive air Solar Chimney(SC)was tested by installing it in the south wall of insulated test room in Baghdad city. The SC was designed from vertical and inclined parts connected serially together, the vertical SC (first part) has a single pass and Thermal Energy Storage Box Collector (TESB (refined paraffin wax as Phase Change Material(PCM)-Copper Foam Matrix(CFM))), while the inclined SC was designed in single pass, double passes and double pass with TESB (semi refined paraffin wax with copper foam matrix) with selective working angle ((30o, 45o and 60o). A computational model was employed and solved by Finite Volume Method (FVM) to simulate the air i
... Show More
Experimental investigation of the influence of inserting the metal foam to the solar chimney to induce natural ventilation are described and analyzed in this work. To carry out the experimental test, two identical solar chimneys (without insertion of metal foam and with insertion of metal foam) are designed and placed facing south with dimensions of length× width× air gap (2 m× 1 m× 0.2 m). Four incline angles are tested (20o,30o,45o,60o) for each chimney in Baghdad climate condition (33.3o latitude, 44.4o longitude) on October, November, December 2018. The solar chimney performance is investigated by experimentally recording absorber pl
... Show MoreThe thermal and electrical performance of different designs of air based hybrid photovoltaic/thermal collectors is investigated experimentally and theoretically. The circulating air is used to cool PV panels and to collect the absorbed energy to improve their performance. Four different collectors have been designed, manufactured and instrumented namely; double PV panels without cooling (model I), single duct double pass collector (model II), double duct single pass (model III), and single duct single pass (model IV) . Each collector consists of: channel duct, glass cover, axial fan to circulate air and two PV panel in parallel connection. The temperature of the upper and
... Show MoreIn this research project, a tip-tilting angle of a photovoltaic solar cell was developed to increase generated electrical power output. An active, accurate, and simple dual-axis tracking system was designed by using an Arduino Uno microprocessor. The system consisted of two sections: software and apparatus (hardware). It was modified by using a group of light-dependent resistor sensors, and two DC servo motors were utilized to rotate the solar panel to a location with maximum sunlight. These components were arranged in a mechanical configuration with the gearbox. The three locations of the solar cell were chosen according to the tilt angle values, at zero angles, which included an optimal 33-degree angle for the Baghdad location and
... Show MoreMillions of pilgrims and visitors from numerous parts of the world flock to Karbala (one of the most prominent ideological and religious places in central Iraq) each year to visit the holy shrines in Karbala due to their sanctity. Many improvements have been made to the Two Holy Shrines (THS), the Shrines of Imam Husayn and Imam Abbas, and the area between them (ATHS), due to the high temperatures in this region and to improve pedestrian thermal comfort. Studies on improving outdoor thermal comfort in Karbala are scarce. Hence, this research aims to look into historical and current architectural changes and how they affect thermal comfort. On the hottest summer day, the ENVI-met software program was used to simulate the building des
... Show MoreMillions of pilgrims and visitors from numerous parts of the world flock to Karbala (one of the most prominent ideological and religious places in central Iraq) each year to visit the holy shrines in Karbala due to their sanctity. Many improvements have been made to the Two Holy Shrines (THS), the Shrines of Imam Husayn and Imam Abbas, and the area between them (ATHS), due to the high temperatures in this region and to improve pedestrian thermal comfort. Studies on improving outdoor thermal comfort in Karbala are scarce. Hence, this research aims to look into historical and current architectural changes and how they affect thermal comfort. On the hottest summer day, the ENVI-met software program was used to simulate the building des
... Show More