Preferred Language
Articles
/
joe-935
Experimental Investigation of Thermal Performance of a Solar Chimney Provided with a Porous Absorber Plate
...Show More Authors

 

Experimental investigation of the influence of inserting the metal foam to the solar chimney to induce natural ventilation are described and analyzed in this work. To carry out the experimental test, two identical solar chimneys (without insertion of metal foam and with insertion of metal foam) are designed and placed facing south with dimensions of length× width× air gap (2 m× 1 m× 0.2 m). Four incline angles are tested (20o,30o,45o,60o) for each chimney in Baghdad climate condition (33.3o latitude, 44.4o longitude) on October, November, December 2018. The solar chimney performance is investigated by experimentally recording absorber plate and air temperatures and velocity of air. Results indicated that the using metal foam absorber plate lead to reducing the mean temperature of absorber plate by 6.7 °C as a result, the values of chimney outlet air temperature increased. The daily solar chimney efficiency enhanced by 58.7% and the useful energy received also increased. The existence of metal foam caused higher air velocity at the exit and increasing in the ventilation rate that the maximum ventilate rate obtained from the solar chimney is 5.96 1/hr for 27 m3 volume of room at solar irradiance of 730 W/m2   for chimney incline angle of 60o. The results of the experimental work show that the addition of metal foam to the solar chimney as an absorber plate is an efficient method to enhance the characteristics of heat transfer and the thermal performance of the solar chimney in the weather condition of Iraq.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed May 17 2023
Journal Name
Journal Of Engineering
Numerical Study of Solar Chimney with Absorber at Different Locations
...Show More Authors

Heat transfer process and fluid flow in a solar chimney used for natural ventilation are investigated numerically in the present work. Solar chimney was tested by selecting different positions of absorber namely: at the back side, front side, and at the middle of the air gap. CFD analysis based on finite volume method is used to predict the thermal performance, and air flow in two dimensional solar chimney under unsteady state condition, to identify the effect of different parameters such as solar radiation. Results show that a solar chimney with absorber at the middle of the air gap gives better ventilation performance. A comparison between the numerical and previous experimental results shows fair agreement.

View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sun Dec 17 2017
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study Using the Passive Solar Chimney for Evaporative Cooling With PCM and CFM as a Thermal Energy Storage
...Show More Authors

 

      In this work, a test room was built in Baghdad city, with (2*1.5*1.5) m3  in dimensions, while the solar chimneys (SC) were designed with aspect ratio (ar) bigger than 12. Test room was supplied by many solar collectors; vertical single side of air pass with ar equals 25, and tilted 45o double side of air passes with ar equals 50 for each pass, both collectors consist of flat thermal energy storage box collector (TESB) that covered by transparent clear acrylic sheet, third type of collector is array of evacuated tubular collectors with thermosyphon in 45o instelled  in the bottom of TESB of vertical SC. The TESB was

... Show More
View Publication Preview PDF
Publication Date
Thu Aug 31 2017
Journal Name
Journal Of Engineering
Energy Analysis of Solar Collector With perforated Absorber Plate
...Show More Authors

The thermal performance of three solar collectors with 3, 6 mm and without perforation absorber plate was assessed experimentally. The experimental tests were implemented in Baghdad during the January and February 2017. Five values of airflow rates range between 0.01 – 0.1 m3/s were used through the test with a constant airflow rate during the test day. The variation of the following parameters air temperature difference, useful energy, absorber plate temperature, and collector efficiency was recorded every 15 minutes. The experimental data reports that the increases  the number of absorber plate perforations with a small diameter is more efficient rather than increasing the hole diameter of the absorber plate with decr

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Experimental and Numerical Study of Collector Geometry Effect on Solar Chimney Performance
...Show More Authors

There have been many advances in the solar chimney power plant  since 1930 and the first pilot work was built in Spain (Manzanares) that produced 50 KW. The solar chimney power plant is considered of a clean power generation that needs to be investigated  to enhance the performance by studying the effect of changing the area of passage of air to enhance the velocity towards the chimney to maximize design velocity. In this experimental and numerical study, the reduction area of solar collector was investigated. The reduction area that mean changing the height of glass cover from the absorbing plate (h1=3.8cm, h2=2.6cm and h3=1.28cm). The numerical study was performed using ANSYS Fluent software package (version 14.0) to solve go

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri May 01 2015
Journal Name
Journal Of Engineering
Experimental Study of the Thermal Performance of Flat Plate Solar Collectors Array by Different Connection Configurations
...Show More Authors

The current research illustrates experimentally the effect of series and parallel connection (Z-I Configurations) of flat plate water solar collectors array on the thermal performance of closed loop solar heating system. The study includes the effect of changing the water flow rate on the thermal efficiency. The results show that, the collector's efficiency in series connection is higher than the parallel connection within flow rate level less than (100) ℓ/hr. Moreover, the collector efficiency in parallel connection of (I-Configurations) is more than the (Z- Configurations) with increasing the water flow rate .The maximum daily efficiency for parallel (I-Configurations) and (Z- Configurations) are (55%) and (51%) at w

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Engineering
Absorber Diameter Effect on the Thermal Performance of Solar Steam Generator
...Show More Authors

In this work, a convex lens concentrating solar collector is designed and manufactured locally by using 10 convex lenses (concentrator) of a diameter 10cm and one Copper absorber tube of a diameter 12.5mm and 1mm in thickness 1m length. Two axes manual Tracking system also constructed to track the sun continuously in two directions. The experiments are made on 17th of May 2015 in climatic conditions of Baghdad. The experimental data are fed to a computer program to solve the thermal performing equation, to find efficiency and actual useful energy. Then this data is used in numerical CFD software for three different absorber diameters (12.5 mm, 18.75 mm and 25 mm). From the results that obtained the maximum the

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Outdoor Testing of a Zig-Zag Solar Air heater with and without Artificial Roughness on Absorber Plate
...Show More Authors

In this paper, thermal performance of a zig-zig solar air heater (ZZSAH) with and without using steel wire mesh on the absorber plate of the collector is experimentally investigated. The experimental work includes four inclination angles of the collector 20o, 30o, 45o, and 60o and four air mass flow rates of 0.03, 0.04, 0.06, and 0.08 kg/s under varieties of operating conditions of a geographic location of  Baghdad. New correlation equations of Nusselt number are obtained from experimental results for both types of collectors where the effect of varying of the inclination angle of collector taken into consideration in the experiment. The correlations show good agreement wi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Engineering
Thermal Efficiency for Passive Solar Chimney with and Without Heat Storage material
...Show More Authors

In this study, a different design of passive air Solar Chimney(SC)was tested by installing it in the south wall of insulated test room in Baghdad city. The SC was designed from vertical and inclined parts connected serially together, the vertical SC (first part) has a single pass and Thermal Energy Storage Box Collector (TESB (refined paraffin wax as Phase Change Material(PCM)-Copper Foam Matrix(CFM))), while the inclined SC was designed in single pass, double passes and double pass with TESB (semi refined paraffin wax with copper foam matrix) with selective working angle ((30o, 45o and 60o). A computational model was employed and solved by Finite Volume Method (FVM) to simulate the air i

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Aug 01 2017
Journal Name
International Journal Of Science And Research (ijsr)
Thermal Analysis of Double-Pass Solar Air Collector with Different Materials of Absorber Plate and Different Dimensions of Air Channels
...Show More Authors

Search Results at the International Journal of Science and Research (IJSR)

View Publication
Publication Date
Fri May 01 2020
Journal Name
Applied Thermal Engineering
Thermal performance of a flat-plate solar collector using aqueous colloidal dispersions of graphene nanoplatelets with different specific surface areas
...Show More Authors

The effects of using aqueous nanofluids containing covalently functionalized graphene nanoplatelets with triethanolamine (TEA-GNPs) as novel working fluids on the thermal performance of a flat-plate solar collector (FPSC) have been investigated. Water-based nanofluids with weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1% of TEA-GNPs with specific surface areas of 300, 500, and 750 m2/g were prepared. An experimental setup was designed and built and a simulation program using MATLAB was developed. Experimental tests were performed using inlet fluid temperatures of 30, 40, and 50 °C; flow rates of 0.6, 1.0, and 1.4 kg/min; and heat flux intensities of 600, 800, and 1000 W/m2. The FPSC’s efficiency increased as the flow rate and hea

... Show More
Crossref (38)
Crossref