Flow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relatively high for 2015-2016-2017. 2018 was utilized as a test year to assess the modeling work and validate the experimental results. In the second step, the artificial neural networks approach employs the python program as an AI, and the affinity ratio of real data using the performance measurement of the mean absolute error (MAE) was 0.005. To improve and reduce the value of absolute error, the genetic algorithm uses the python program and the convergence ratio became 0.001. It inferred that the algorithm is efficient in improving results. Thus, the genetic algorithm provided better results with fewer errors than the neural network alone. This concludes that the shown network has superior performance over others and the possibility of its long-term predictions for 2030. A Sing time series helped detect future cases by reading and inferring system data. The development of appropriate work plans will lower internal and external expenses of the systems and help integrate other capabilities by giving correct data sources of raw materials, costs, etc. To facilitate prediction for maintenance workers, an interface has been created that facilitates users to apply them using the python program represented by entering the times, an hour, a day, a month, a year, to predict the type and place of failure.
The mechanical properties of fiber-reinforced-polymer (FRP)
composites are dependent on the type amount, and orientation of fiber that is selected for a particular service. There are many commercially available reinforcement forms to meet the design requirements of the user. The ability of failure in the fiber architecture allows for optimized performance of a product that saves both weight and cost ( 12).
A modem technology is adopted to produce fibers (glass, kevelar,
and carbon) reinforced composite by using unsaturated polyester, where different volume fraction of these fibers are used (0, 0.2, 0.4, 0.6, 0.8, I)
reinfor
... Show MoreThe sale of facial features is a new modern contractual development that resulted from the fast transformations in technology, leading to legal, and ethical obligations. As the need rises for human faces to be used in robots, especially in relation to industries that necessitate direct human interaction, like hospitality and retail, the potential of Artificial Intelligence (AI) generated hyper realistic facial images poses legal and cybersecurity challenges. This paper examines the legal terrain that has developed in the sale of real and AI generated human facial features, and specifically the risks of identity fraud, data misuse and privacy violations. Deep learning (DL) algorithms are analyzed for their ability to detect AI genera
... Show MoreAA wahid, journal mustansiriyah of sports science, 2023
Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w
... Show MoreThis current research aims to identify the effectiveness of a training program in developing moral intelligence and mutual social confidence among middle school students. The researcher made a number of hypotheses for this purpose to achieve the goal of the research.
The researcher relied on the (Al Zawaida 2011) scale prepared according to Coles (1997), including (60) items, and the mutual social trust scale for (Nazmi 2001) based on Roter's theory including (38) items.  
... Show MoreThe purpose of this research is to analyze the relationship between the emotional intelligence and the leadership personality of the managers . the research was tested at the college of administration and economics – university of Baghdad through applying it on a sample of (67) members and units of the college. a questionnaire was used as a major tool for collecting data and information . for the purpose of researching to conclusion, the research aimed to test two main hypotheses related to the correlation coefficient and the effect correlation between the two main variable of the research, some statistical techniques such as (the mean, student deviation, percentages, correlation coefficient spearman, simple regression) were us
... Show More