Flow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relatively high for 2015-2016-2017. 2018 was utilized as a test year to assess the modeling work and validate the experimental results. In the second step, the artificial neural networks approach employs the python program as an AI, and the affinity ratio of real data using the performance measurement of the mean absolute error (MAE) was 0.005. To improve and reduce the value of absolute error, the genetic algorithm uses the python program and the convergence ratio became 0.001. It inferred that the algorithm is efficient in improving results. Thus, the genetic algorithm provided better results with fewer errors than the neural network alone. This concludes that the shown network has superior performance over others and the possibility of its long-term predictions for 2030. A Sing time series helped detect future cases by reading and inferring system data. The development of appropriate work plans will lower internal and external expenses of the systems and help integrate other capabilities by giving correct data sources of raw materials, costs, etc. To facilitate prediction for maintenance workers, an interface has been created that facilitates users to apply them using the python program represented by entering the times, an hour, a day, a month, a year, to predict the type and place of failure.
“Smart city” projects have become fully developed and are actively using video analytics. Our study looks at how video analytics from surveillance cameras can help manage urban areas, making the environment safer and residents happier. Every year hundreds of people fall on subway and railway lines. The causes of these accidents include crowding, fights, sudden health problems such as dizziness or heart attacks, as well as those who intentionally jump in front of trains. These accidents may not cause deaths, but they cause delays for tens of thousands of passengers. Sometimes passers-by have time to react to the event and try to prevent it, or contact station personnel, but computers can react faster in such situations by using ethical
... Show MoreArtificial intelligence (AI) offers significant benefits to biomedical research and academic writing. Nevertheless, using AI-powered writing aid tools has prompted worries about excessive dependence on these tools and their possible influence on writing proficiency. The current study aimed to explore the academic staff’s perspectives on the impact of AI on academic writing. This qualitative study incorporated in-person interviews with academic faculty members. The interviews were conducted in a semi-structured manner, using a predetermined interview guide consisting of open-ended questions. The interviews were done in person with the participants from May to November 2023. The data was analyzed using thematic analysis. Ten academics aged
... Show MoreAbstract Objectives: This research seeks to highlight one of the important topics artificial intelligence and its impact on education and media. This issue has received considerable attention from international institutions and organizations in order to keep pace with the world's current progress. The study provided an overview of the concept of artificial intelligence, its definitions, its importance and characteristics and its impact on education in general and on the student and teacher in particular, as well as linking the subject of education to the media because social media that is one of the media has a great impact on the academic community. Methods: This study relied on the analytical descriptive curriculum where one of the curr
... Show MoreAThe Bridge Maintenance Management System (BMMS) is an application system that uses existing data from a Bridge Management System database for monitoring and analysis of current bridges performance, as well as for estimating the current and future maintenance and rehabilitation needs of the bridges. In a transportation context, the maintenance management is described as a cost-effective process to operate, construct, and maintain physical money. This needs analytical tools to support the allocation of resources, materials, equipment, including personnel, and supplies. Therefore, Geographic Information System (GIS) can be considered as one tool to develop the road and bridge maintenanc
This study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K
... Show MoreToday, there are large amounts of geospatial data available on the web such as Google Map (GM), OpenStreetMap (OSM), Flickr service, Wikimapia and others. All of these services called open source geospatial data. Geospatial data from different sources often has variable accuracy due to different data collection methods; therefore data accuracy may not meet the user requirement in varying organization. This paper aims to develop a tool to assess the quality of GM data by comparing it with formal data such as spatial data from Mayoralty of Baghdad (MB). This tool developed by Visual Basic language, and validated on two different study areas in Baghdad / Iraq (Al-Karada and Al- Kadhumiyah). The positional accuracy was asses
... Show MoreIn this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these
... Show MoreIn this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these measurement
... Show MoreIt is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i
... Show MoreAs one type of heating furnaces, the electric heating furnace (EHF) typically suffers from time delay, non-linearity, time-varying parameters, system uncertainties, and harsh en-vironment of the furnace, which significantly deteriorate the temperature control process of the EHF system. In order to achieve accurate and robust temperature tracking performance, an integration of robust state feedback control (RSFC) and a novel sliding mode-based disturbance observer (SMDO) is proposed in this paper, where modeling errors and external disturbances are lumped as a lumped disturbance. To describe the characteristics of the EHF, by using convection laws, an integrated dynamic model is established and identified as an uncertain nonlinear second ord
... Show More