Flow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relatively high for 2015-2016-2017. 2018 was utilized as a test year to assess the modeling work and validate the experimental results. In the second step, the artificial neural networks approach employs the python program as an AI, and the affinity ratio of real data using the performance measurement of the mean absolute error (MAE) was 0.005. To improve and reduce the value of absolute error, the genetic algorithm uses the python program and the convergence ratio became 0.001. It inferred that the algorithm is efficient in improving results. Thus, the genetic algorithm provided better results with fewer errors than the neural network alone. This concludes that the shown network has superior performance over others and the possibility of its long-term predictions for 2030. A Sing time series helped detect future cases by reading and inferring system data. The development of appropriate work plans will lower internal and external expenses of the systems and help integrate other capabilities by giving correct data sources of raw materials, costs, etc. To facilitate prediction for maintenance workers, an interface has been created that facilitates users to apply them using the python program represented by entering the times, an hour, a day, a month, a year, to predict the type and place of failure.
Abstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS
... Show MoreKetoprofen has recently been proven to offer therapeutic potential in preventing cancers such as colorectal and lung tumors, as well as in treating neurological illnesses. The goal of this review is to show the methods that have been used for determining ketoprofen in pharmaceutical formulations. Precision product quality control is crucial to confirm the composition of the drugs in pharmaceutical use. Several analytical techniques, including chromatographic and spectroscopic methods, have been used for determining ketoprofen in different sample forms such as a tablet, capsule, ampoule, gel, and human plasma. The limit of detection of ketoprofen was 0.1 ng/ ml using liquid chromatography with tandem mass spectrometry, while it was 0
... Show MoreThis paper designed a fault tolerance for soft real time distributed system (FTRTDS). This system is designed to be independently on specific mechanisms and facilities of the underlying real time distributed system. It is designed to be distributed on all the computers in the distributed system and controlled by a central unit.
Besides gathering information about a target program spontaneously, it provides information about the target operating system and the target hardware in order to diagnose the fault before occurring, so it can handle the situation before it comes on. And it provides a distributed system with the reactive capability of reconfiguring and reinitializing after the occurrence of a failure.
KE Sharquie, AA Noaimi, WK Al-Janabi, Journal of Cosmetics, Dermatological Sciences and Applications, 2013
Protein arginine methyltransferases (PRMTs) play important roles in transcription, splicing, DNA damage repair, RNA biology, and cellular metabolism. Thus, PRMTs have been attractive targets for various diseases. In this study, we reported the design and synthesis of a potent pan-inhibitor for PRMTs that tethers a thioadenosine and various substituted guanidino groups through a propyl linker. Compound II757 exhibits a half-maximal inhibition concentration (IC50) value of 5 to 555 nM for eight tested PRMTs, with the highest inhibition for PRMT4 (IC50 = 5 nM). The kinetic study demonstrated that II757 competitively binds at the SAM binding site of PRMT1. Notably, II757 is selective for PRMTs over a panel of other methyltransferases, w
... Show MoreIn this study an experimental work was done to study the possibility of using aluminum rubbish material as a coagulant to remove the colloidal particles from oily wastewater by dissolving this rubbish in sodium hydroxide solution. The experiments were carried out on simulated oily wastewater that was prepared at different oil concentrations and hardness levels (50, 250, 500, and 1000) ppm oil for (2000, 2500, 3000, and 3500) ppm CaCo3 respectively. The initial turbidity values were (203, 290, 770, and 1306) NTU, while the minimum values of turbidity that have been gained from the experiments in NTU units were (1.67, 1.95, 2.10, and 4.01) at best sodium aluminate dosages in milliliters (12, 20, 24, and 28) for
... Show Morethe electron correlation effect for inter-shell can be described by evaluating the fermi hole and partial fermi hole for Li atom comparing with Be+ and B+2 ions