Preferred Language
Articles
/
alkej-816
A Methodology for Evaluating and Scheduling Preventive Maintenance for a Thermo-Electric Unit Using Artificial Intelligence
...Show More Authors

Flow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relatively high for 2015-2016-2017. 2018 was utilized as a test year to assess the modeling work and validate the experimental results. In the second step, the artificial neural networks approach employs the python program as an AI, and the affinity ratio of real data using the performance measurement of the mean absolute error (MAE) was 0.005. To improve and reduce the value of absolute error, the genetic algorithm uses the python program and the convergence ratio became 0.001. It inferred that the algorithm is efficient in improving results. Thus, the genetic algorithm provided better results with fewer errors than the neural network alone. This concludes that the shown network has superior performance over others and the possibility of its long-term predictions for 2030. A Sing time series helped detect future cases by reading and inferring system data. The development of appropriate work plans will lower internal and external expenses of the systems and help integrate other capabilities by giving correct data sources of raw materials, costs, etc. To facilitate prediction for maintenance workers, an interface has been created that facilitates users to apply them using the python program represented by entering the times, an hour, a day, a month, a year, to predict the type and place of failure.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jul 29 2018
Journal Name
Science International
THE EFFECT OF QUR'ANIC VERSES STRATEGY ON ACHIEVING SCIENCE AND SYSTEMIC INTELLIGENCE FOR SECOND GRADE STUDENTS.
...Show More Authors

The objective of the research is to uncover the effect of the strategy of Quranic verses in the collection of science and systemic intelligence for second-grade students. The research sample consisted of (48) students of second grade students in the middle of Al Rasheed Boys School of the second Karkh Directorate, Distribution in the two divisions, Division of (b) and experimental group that studied strategy of Quranic verses, and the Division (a) control group which studied the regular way, and results indicated a statistically significant differences for the experimental group students studied using the strategy Verses in systemic intelligence collection.

Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
International Journal Of Information Systems And Change Management
Designing a knowledge management measurement for educational institutions: a qualitative research
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Physics: Conference Series
A New Iterative Methods For a Family of Asymptotically Severe Mappings
...Show More Authors
Abstract<p>The aim of this paper is to introduce the concepts of asymptotically p-contractive and asymptotically severe accretive mappings. Also, we give an iterative methods (two step-three step) for finite family of asymptotically p-contractive and asymptotically severe accretive mappings to solve types of equations.</p>
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Tue Aug 31 2021
Journal Name
Inmateh Agricultural Engineering
DETERMINING THE EFFICIENCY OF A SMART SPRAYING ROBOT FOR CROP PROTECTION USING IMAGE PROCESSING TECHNOLOGY
...Show More Authors

A system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.

View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Mar 05 2017
Journal Name
Baghdad Science Journal
Study a concentration of Uranium for samples of soil from Falluja City using PM-355
...Show More Authors

In this study a concentration of uranium was measured for twenty two samples of soil distributed in many regions (algolan, almoalmeen, alaskary and nasal streets) from Falluja Cityin AL-Anbar Governorate in addition to other region (alandlos street) as a back ground on the Falluja City that there is no military operations happened on it. The uranium concentrations in soil samples measured by using fission tracks registration in (PM-355) track detector that caused by the bombardment of (U) with thermal neutrons from (241Am-Be) neutron source that has flux of (5×103n cm-2 s-1). The concentrations values were calculated by a comparison with standard samples. The results shows that the uranium concentrations algolan street varies from(1.

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Civil And Environmental Engineering
Developing A Mathematical Model for Planning Repetitive Construction Projects By Using Support Vector Machine Technique
...Show More Authors
Abstract<p>Each project management system aims to complete the project within its identified objectives: budget, time, and quality. It is achieving the project within the defined deadline that required careful scheduling, that be attained early. Due to the nature of unique repetitive construction projects, time contingency and project uncertainty are necessary for accurate scheduling. It should be integrated and flexible to accommodate the changes without adversely affecting the construction project’s total completion time. Repetitive planning and scheduling methods are more effective and essential. However, they need continuous development because of the evolution of execution methods, essent</p> ... Show More
View Publication
Crossref (3)
Clarivate Crossref
Publication Date
Tue Sep 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Density and Approximation by Using Feed Forward Artificial Neural Networks
...Show More Authors

I n  this  paper ,we 'viii  consider  the density  questions  associC;lted with  the single  hidden layer feed forward  model. We proved  that a FFNN   with   one   hidden   layer  can   uniformly   approximate   any continuous  function  in C(k)(where k is a compact set in R11 ) to any required accuracy.

 

However, if the set of basis function is dense then the ANN's can has al most one hidden layer. But if the set of basis function  non-dense, then we  need more  hidden layers. Also, we have shown  that there exist  localized functions and that there is no t

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Modeling and Control of Fuel Cell Using Artificial Neural Networks
...Show More Authors

This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 01 2008
Journal Name
2008 International Symposium On Information Technology
Generating pairwise combinatorial test set using artificial parameters and values
...Show More Authors

View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Account the expected values ??for a single particle to a group of atoms and ions
...Show More Authors

Technique was used to retail for analyzing atom beryllium ion cathode of an atom lithium to six pairs of functions wave which two ?????? and the rest of the casing moderation and to analyze atom lithium ion Mob atom beryllium to three pairs of functions wave pair of casing and the rest of the casing moderation using function wave Hartree Fock and each casing email wascalculate expected values ??....

View Publication Preview PDF