Hot-wire cutting is one of the important, non-traditional thermomechanical way to cut polymer, usually expanded foam and extruded foam, in low volume manufacturing. The study and analysis of Hot-Wire cutting parameters play an important role to enhance the quality and accuracy of the process and products. The effects on the surface have been investigated by using experimental tests designed according to the Taguchi orthogonal array (OA). In this study, four parameters with five levels for each parameter have been used: [temperature of wire (A) (100, 120, 130, 150, 160) °C], [diameter of wire (B) (0.3,0.4,0.5,0.7,0.8) mm], [velocity of cutting (C) (200, 300,400,500,600) mm/min], [and density of foam (D) (0.01,0.027,0.029,0.032,0.037) g/cm3]. Statistical software (MINITAB17) used to find the optimum conditions, which they are in Material Removal: 100 ˚C, 0.5 mm, 300mm/min, 0.032 g/cm3.
Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show MoreThe modern steer-by-wire (SBW) systems represent a revolutionary departure from traditional automotive designs, replacing mechanical linkages with electronic control mechanisms. However, the integration of such cutting-edge technologies is not without its challenges, and one critical aspect that demands thorough consideration is the presence of nonlinear dynamics and communication network time delays. Therefore, to handle the tracking error caused by the challenge of time delays and to overcome the parameter uncertainties and external perturbations, a robust fast finite-time composite controller (FFTCC) is proposed for improving the performance and safety of the SBW systems in the present article. By lumping the uncertainties, parameter var
... Show MoreThe effect of electrolysis operating parameters on the removal efficiency of cadmium from a simulated wastewater was studied by adopting response surface methodology combined with Box–Behnken Design. As a new electrode design, spiral-wound woven wire mesh rotating cylinder electrode was used for cadmium removal. Current (240–400 mA), rotation speed (200–1000 rpm), initial cadmium concentration (200–600ppm), and cathode mesh number (30–60) were chosen as independent variables while the removal efficiency of cadmium was considered as a response function. The results revealed that the rotation speed has the major effect on the removal efficiency of cadmium. Regression analysis showed good fit of the experimental data to the second-or
... Show MoreIn this paper, an adaptive active disturbance rejection control is newly designed for precise angular steering position tracking of the uncertain and nonlinear SBW system with time delay communications. The proposed adaptive active disturbance rejection control comprises the following two elements: (1) An adaptive extended state observer and (2) an adaptive state error feedback controller. The adaptive extended state observer with adaptive gains is employed for estimating the unmeasured velocity, acceleration, and compound disturbance which consists of system parameter uncertainties, nonlinearities, exterior disturbances, and time delay in which the observer gains are dynamically adjusted based on the estimation error to enhance est
... Show MoreThe acceptance sampling plans for generalized exponential distribution, when life time experiment is truncated at a pre-determined time are provided in this article. The two parameters (α, λ), (Scale parameters and Shape parameters) are estimated by LSE, WLSE and the Best Estimator’s for various samples sizes are used to find the ratio of true mean time to a pre-determined, and are used to find the smallest possible sample size required to ensure the producer’s risks, with a pre-fixed probability (1 - P*). The result of estimations and of sampling plans is provided in tables.
Key words: Generalized Exponential Distribution, Acceptance Sampling Plan, and Consumer’s and Producer Risks
... Show More