The purpose of this study is designate quenching and tempering heat treatment by using Taguchi technique to determine optimal factors of heat treatment (austenitizing temperature, percentage of nanoparticles, type of base media, nanoparticles type and soaking time) for increasing hardness, wear rate and impact energy properties of 420 martensitic stainless steel. An (L18) orthogonal array was chosen for the design of experiment. The optimum process parameters were determined by using signal-to-noise ratio (larger is better) criterion for hardness and impact energy while (Smaller is better) criterion was for the wear rate. The importance levels of process parameters that effect on hardness, wear rate and impact energy properties were obtained by using analysis of variance which applied with the help of (Minitab18) software. The variables of quenching heat treatment were austenitizing temperature (985 C˚,1060 C˚),a soaking times (50,70 and 90 minutes) respectively, Percentage of volumetric fractions of nanoparticles with three different levels(0.01, 0.03 and 0.08 %) were prepared by dispersing nanoparticles that are (α-Al2O3,TiO2 and CuO) with base fluids (De-ionized water, salt solution and engine oil).The specimens were tempered at 700°C after quenching of nanofluids for (2 hours).The results for ( S/N) ratios showed the order of the factors in terms of the proportion of their effect on hardness, and wear rate properties as follow: Austenitizing temperature ( 1060 C˚),Type of base media (salt solution), Nanoparticles type (CuO), Percentage of nanoparticles (0.08%) and Soaking time(90min) was the least influence while for the impact energy were as follows: Type of base media (oil), Austenitizing temperature (985C˚), Percentage of nanoparticles (0.01%), Nanoparticles type (α-Al2O3) and last soaking time (50min).
The corrosion of metals is of great economic importance. Estimates show that the quarter of the iron and the steel produced is destroyed in this way. Rubber lining has been used for severe corrosion protection because NR and certain synthetic rubbers have a basic resistance to the very corrosive chemicals particularly acids. The present work includes producing ebonite from both natural and synthetic rubbers ; therefore, the following materials were chosen to produce ebonite rubber: a) Natural rubber (NR). b) Styrene butadiene rubber (SBR). c) Nitrile rubber (NBR). d) Neoprene rubber (CR) [WRT]. The best ebonite vulcanizates are obtained in the presence of 30 Pphr sulfur, and carbon black as reinforcing filler. The relation between
... Show MoreMerging images is one of the most important technologies in remote sensing applications and geographic information systems. In this study, a simulation process using a camera for fused images by using resizing image for interpolation methods (nearest, bilinear and bicubic). Statistical techniques have been used as an efficient merging technique in the images integration process employing different models namely Local Mean Matching (LMM) and Regression Variable Substitution (RVS), and apply spatial frequency techniques include high pass filter additive method (HPFA). Thus, in the current research, statistical measures have been used to check the quality of the merged images. This has been carried out by calculating the correlation a
... Show MoreThe study presents the test results of Completely Decomposed Granite (CDG) soil tested under drained triaxial compression, direct shear and simple shear tests. Special attention was focused on the modification of the upper halve of conventional Direct Shear Test (DST) to behave as free
head in movement along with vertical strain control during shear stage by using Geotechnical Digital System (GDS). The results show that Free Direct Shear Test (FDST) has clear effect on the measured shear stress and vertical strain during the test. It has been found that shear strength
parameters measured from FDST were closer to those measured from simple shear and drained triaxial compression test. This study also provides an independent check on
The subject of this research involves studying adsorption to remove hexavalent chromium Cr(VI) from aqueous solutions. Adsorption process on bentonite clay as adsorbent was used in the Cr(VI) concentration range (10-100) ppm at different temperatures (298, 303, 308 and 313)K, for different periods of time. The adsorption isotherms were obtained by obeying Langmuir and Freundlich adsorption isotherm with R2 (0.9921-0.9060) and (0.994-0.9998), respectively. The thermodynamic parameters were calculated by using the adsorption process at four different temperatures the values of ?H, ?G and ?S was [(+6.582 ? +6.547) kJ.mol-1, (-284.560 ? -343.070) kJ.mol-1 and (+0.977 ? +1.117) kJ.K-1.mol-1] respectively. This data indicates the spontaneous sorp
... Show MoreIn this paper, simulation studies and applications of the New Weibull-Inverse Lomax (NWIL) distribution were presented. In the simulation studies, different sample sizes ranging from 30, 50, 100, 200, 300, to 500 were considered. Also, 1,000 replications were considered for the experiment. NWIL is a fat tail distribution. Higher moments are not easily derived except with some approximations. However, the estimates have higher precisions with low variances. Finally, the usefulness of the NWIL distribution was illustrated by fitting two data sets
The transition of customers from one telecom operator to another has a direct impact on the company's growth and revenue. Traditional classification algorithms fail to predict churn effectively. This research introduces a deep learning model for predicting customers planning to leave to another operator. The model works on a high-dimensional large-scale data set. The performance of the model was measured against other classification algorithms, such as Gaussian NB, Random Forrest, and Decision Tree in predicting churn. The evaluation was performed based on accuracy, precision, recall, F-measure, Area Under Curve (AUC), and Receiver Operating Characteristic (ROC) Curve. The proposed deep learning model performs better than othe
... Show MoreAs smartphones incorporate location data, there is a growing concern about location privacy as smartphone technologies advance. Using a remote server, the mobile applications are able to capture the current location coordinates at any time and store them. The client awards authorization to an outsider. The outsider can gain admittance to area information on the worker by JSON Web Token (JWT). Protection is giving cover to clients, access control, and secure information stockpiling. Encryption guarantees the security of the location area on the remote server using the Rivest Shamir Adleman (RSA) algorithm. This paper introduced two utilizations of cell phones (tokens, and location). The principal application can give area inf
... Show MorePredicting the network traffic of web pages is one of the areas that has increased focus in recent years. Modeling traffic helps find strategies for distributing network loads, identifying user behaviors and malicious traffic, and predicting future trends. Many statistical and intelligent methods have been studied to predict web traffic using time series of network traffic. In this paper, the use of machine learning algorithms to model Wikipedia traffic using Google's time series dataset is studied. Two data sets were used for time series, data generalization, building a set of machine learning models (XGboost, Logistic Regression, Linear Regression, and Random Forest), and comparing the performance of the models using (SMAPE) and
... Show MoreSpeech is the essential way to interact between humans or between human and machine. However, it is always contaminated with different types of environment noise. Therefore, speech enhancement algorithms (SEA) have appeared as a significant approach in speech processing filed to suppress background noise and return back the original speech signal. In this paper, a new efficient two-stage SEA with low distortion is proposed based on minimum mean square error sense. The estimation of clean signal is performed by taking the advantages of Laplacian speech and noise modeling based on orthogonal transform (Discrete Krawtchouk-Tchebichef transform) coefficients distribution. The Discrete Kra