The distribution of chilled water flow rate in terminal unit is a major factor used to evaluate the performance of central air conditioning unit. In this work, a theoretical chilled water distribution in the terminal units has been studied to predict the optimum heat performance of terminal unit. The central Air-conditioning unit model consists of cooling/ heating coil (three units), chilled water source (chiller), three-way and two-way valve with bypass, piping network, and pump. The term of optimization in terminal unit ingredient has two categories, the first is the uniform of the water flow rate representing in statically permanents standard deviation (minimum value) and the second category is the maximum heat transfer rate from all terminal units. The hydraulic and energy equations governing the performance of unit solved with the aid of FORTRAN code with considering the following parameters: total water flow rate, chilled water supply temperature, and variable valve opening. It was found that the optimum solution of three-way valve case at 8°C water supply temperature, 0.12 kg/s total water flow rate and valve opening order (valve 1: 100%, valve 2: 100% and valve 3: 75%) with total heat rate (987.92 Watt) and standard deviation (1.181E-3). Also, for the two-way valve case the results showed that the optimum condition at 8°C water supply temperature, 0.12 kg/s total water flow rate and valve opening order (valve 1: 75%, valve 2: 75% and valve 3: 50%) with total heat rate and standard deviation (717Watt) and (5.69E-4) respectively.
In this paper, for the first time we introduce a new four-parameter model called the Gumbel- Pareto distribution by using the T-X method. We obtain some of its mathematical properties. Some structural properties of the new distribution are studied. The method of maximum likelihood is used for estimating the model parameters. Numerical illustration and an application to a real data set are given to show the flexibility and potentiality of the new model.
Seasonal variations of the species composition and abundance of Cladocera were studied in two stations at the end of the Tigris River and one station at the confluence of the Tigris with Euphrates area, at the beginning of the Shatt Al-Arab River in Al-Qurnah North of Basrah Province, from October 2015 to August 2016. Samples of zooplankton were collected by plankton net 100-µm. mesh size. The population density of Cladocera ranged between 1 Ind /m³ during summer and 211 Ind./m³ during winter at station 1 (Al-Jewaber Bridge). A total of 16 species of Cladocera belonging to 12 genera were recorded in the study. The average density of Cladocera ranged from 23.2 ind./m3 at Station 2 (Hamayon Bridge) to 53.7 Ind./m3
... Show MoreFire is one of the most critical risks devastating to human life and property. Therefore, humans make different efforts to deal with fire hazards. Many techniques have been developed to assess fire safety risks. One of these methods is to predict the outbreak of a fire in buildings, and although it is hard to predict when a fire will start, it is critical to do so to safeguard human life and property. This research deals with evaluating the safety risks of the existing building in the city of Samawah/Iraq and determining the appropriateness of these buildings in terms of safety from fire hazards. Twelve parameters are certified based on the National Fire Protection Association (NFPA20
Rutting is a crucial element of the mechanical performance characteristics of asphalt mixtures, which was the primary target of this study. The task involved substituting various portions of virgin coarse aggregate with recycled concrete aggregate materials that had been treated or left untreated at rates ranging from 25 to 100%, with a constant increase of 25%. The treatment process of recycled concrete aggregate involved soaking in acetic acid, followed by a mechanical process for a short time inside a Los Angeles machine without the balls. This research utilized two primary tests: the standard Marshall test to identify the optimal asphalt contents and the volumetric characteristics of asphalt mixtures. The other one w
... Show MoreRetinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th
This Paper aims to plan the production of the electrical distribution converter (400 KV/11) for one month at Diyala Public Company and with more than one goal for the decision-maker in a fuzzy environment. The fuzzy demand was forecasting using the fuzzy time series model. The fuzzy lead time for raw materials involved in the production of the electrical distribution converter (400 KV/11) was addressed using the fuzzy inference matrix through the application of the matrix in Matlab, and since the decision-maker has more than one goal, so a mathematical model of goal programming was create, which aims to achieve two goals, the first is to reduce the total production costs of the electrical distribution converter (400 KV/11) and th
... Show MoreThe COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreInformation about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites
... Show MoreBackground: techniques of image analysis have been used extensively to minimize interobserver variation of immunohistochemical scoring, yet; image acquisition procedures are often demanding, expensive and laborious. This study aims to assess the validity of image analysis to predict human observer’s score with a simplified image acquisition technique. Materials and methods: formalin fixed- paraffin embedded tissue sections for ameloblastomas and basal cell carcinomas were immunohistochemically stained with monoclonal antibodies to MMP-2 and MMP-9. The extent of antibody positivity was quantified using Imagej® based application on low power photomicrographs obtained with a conventional camera. Results of the software were employed
... Show More