Preferred Language
Articles
/
alkej-236
Integral Sliding Mode Control Design for Electronic Throttle Valve System
...Show More Authors

Abstract

 One of the major components in an automobile engine is the throttle valve part. It is used to keep up with emissions and fuel efficiency low. Design a control system to the throttle valve is newly common requirement trend in automotive technology. The non-smoothness nonlinearity in throttle valve model are due to the friction model and the nonlinear spring, the uncertainty in system parameters and non-satisfying the matching condition are the main obstacles when designing a throttle plate controller.

In this work, the theory of the Integral Sliding Mode Control (ISMC) is utilized to design a robust controller for the Electronic Throttle Valve (ETV) system. From the first instant, the electronic throttle valve dynamics is represented by the nominal system model, this model is not affected by system parameters uncertainty and the non-smooth nonlinearities. This is a consequence of applying the integral sliding mode control. The ISMC consists of two part; the first is the nominal control which is used to control the nominal system, while the second is a discontinuous part which is used to eliminate the effects of the parameters uncertainty and the non-smooth nonlinearities from system model. These features for the ISMC are proved mathematically and demonstrated numerically via seven numerical simulations and for different desired trajectories.  The simulation results clarify that for different system parameters, the ETV behaves as a nominal system. This enables to freely and precisely select the system response characteristics and the time required for the throttle angle to reach the desired value. Moreover the ability to deal with the chattering problem is demonstrated through the worked  simulation tests, where the chattering is eliminated via approximating the signum function by arc tan function.

 Keywords: Electronic throttle valve, Nonlinear spring model, Integral sliding mode control, Non-smooth model.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Dec 01 2017
Journal Name
2017 11th Asian Control Conference (ascc)
Super-twisting based integral sliding mode control applied to a rotary flexible joint robot manipulator
...Show More Authors

In this paper, a single link flexible joint robot is used to evaluate a tracking trajectory control and vibration reduction by a super-twisting integral sliding mode (ST-ISMC). Normally, the system with joint flexibility has inevitably some uncertainties and external disturbances. In conventional sliding mode control, the robustness property is not guaranteed during the reaching phase. This disadvantage is addressed by applying ISMC that eliminates a reaching phase to ensure the robustness from the beginning of a process. To design this controller, the linear quadratic regulator (LQR) controller is first designed as the nominal control to decide a desired performance for both tracking and vibration responses. Subsequently, discontinuous con

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Mon Dec 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Genetic Algorithm Based PID Controller Design for a Precise Tracking of Two-Axis Piezoelectric Micropositioning Stage
...Show More Authors

 In this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs) method for the optimal Proportional-Integral-Derivative (PID) controller tuning parameters. The (GA)-based PID control design approach is a methodology to tune a (PID) controller in an optimal control sense with respect to specified objective function. By using the (GA)-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA) code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with th

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2017
Journal Name
Journal Of Engineering
Adaptive Sliding Mode Controller for Servo Actuator System with Friction
...Show More Authors

This paper addresses the use of adaptive sliding mode control for the servo actuator system with friction. The adaptive sliding mode control has several advantages over traditional sliding mode control method. Firstly, the magnitude of control effort is reduced to the minimal admissible level defined by the conditions for the sliding mode to exist. Secondly, the upper bounds of uncertainties are not required to be known in advance. Therefore, adaptive sliding mode control method can be effectively implemented. The numerical simulation via MATLAB 2014a for servo actuator system with friction is investigated to confirm the effectiveness of the proposed robust adaptive sliding mode control scheme. The results clarify, after

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 22 2023
Journal Name
Actuators
Practical Adaptive Fast Terminal Sliding Mode Control for Servo Motors
...Show More Authors

Position control of servo motor systems is a challenging task because of inevitable factors such as uncertainties, nonlinearities, parametric variations, and external perturbations. In this article, to alleviate the above issues, a practical adaptive fast terminal sliding mode control (PAFTSMC) is proposed for better tracking performance of the servo motor system by using a state observer and bidirectional adaptive law. First, a smooth-tangent-hyperbolic-function-based practical fast terminal sliding mode control (PFTSM) surface is designed to ensure not only fast finite time tracking error convergence but also chattering reduction. Second, the PAFTSMC is proposed for the servo motor, in which a two-way adaptive law is designed to further s

... Show More
View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
A Cognitive Hybrid Tuning Control Algorithm Design for Nonlinear Path-Tracking Controller for Wheeled Mobile Robot
...Show More Authors

Abstract

This research presents a on-line cognitive tuning control algorithm for the nonlinear controller of path-tracking for dynamic wheeled mobile robot to stabilize and follow a continuous reference path with minimum tracking pose error. The goal of the proposed structure of a hybrid (Bees-PSO) algorithm is to find and tune the values of the control gains of the nonlinear (neural and back-stepping method) controllers as a simple on-line with fast tuning techniques in order to obtain the best torques actions of the wheels for the cart mobile robot from the proposed two controllers. Simulation results (Matlab Package 2012a) show that the nonlinear neural controller with hybrid Bees-PSO cognitive algorithm is m

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Ieee Transactions On Industrial Electronics
Cascaded-Extended-State-Observer-Based Sliding-Mode Control for Underactuated Flexible Joint Robot
...Show More Authors

This article presents a new cascaded extended state observer (CESO)-based sliding-mode control (SMC) for an underactuated flexible joint robot (FJR). The control of the FJR has many challenges, including coupling, underactuation, nonlinearity, uncertainties and external disturbances, and the noise amplification especially in the high-order systems. The proposed control integrates the CESO and SMC, in which the CESO estimates the states and disturbances, and the SMC provides the system robustness to the uncertainty and disturbance estimation errors. First, a dynamic model of the FJR is derived and converted from an underactuated form to a canonical form via the Olfati transformation and a flatness approach, which reduces the complexity of th

... Show More
View Publication
Scopus (98)
Crossref (95)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
design Electronic cost accounting system for the Iraqi Airways Company
...Show More Authors

The research Was based to on a real problem and realistically of represented by that  Iraqi Airways company does not have the electronic cost accounting system and therefore  be the process of  the pricing various services provided by a company sample research respecting  air transport and air cargo and aviation fuel and services and catering are not properly especially in the presence of new data from the new companies entering competition in Iraqi aviation industry and therefore does not provide price flexibility in order to compete in getting market share, And then research this problem addressed through design an electronic cost Accounting system covers all the costs incurred by the compan

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Apr 08 2018
Journal Name
Al-khwarizmi Engineering Journal
Design of Hybrid Neural Fuzzy Controller for Human Robotic Leg System
...Show More Authors

 In this paper, the human robotic leg which can be represented mathematically by single input-single output (SISO) nonlinear differential model with one degree of freedom, is analyzed and then a simple hybrid neural fuzzy controller is designed to improve the performance of this human robotic leg model. This controller consists from SISO fuzzy proportional derivative (FPD) controller with nine rules summing with single node neural integral derivative (NID) controller with nonlinear function. The Matlab simulation results for nonlinear robotic leg model with the suggested controller showed that the efficiency of this controller when compared with the results of the leg model that is controlled by PI+2D, PD+NID, and F

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Ieee Transactions On Industrial Electronics
Finite-Time Continuous Terminal Sliding Mode Control of Servo Motor Systems
...Show More Authors

In this article, a continuous terminal sliding mode control algorithm is proposed for servo motor systems. A novel full-order terminal sliding mode surface is proposed based on the bilimit homogeneous property, such that the sliding motion is finite-time stable independent of the system’s initial condition. A new continuous terminal sliding mode control algorithm is proposed to guarantee that the system states reach the sliding surface in finitetime. Not only the robustness is guaranteed by the proposed controller but also the continuity makes the control algorithm more suitable for the servo mechanical systems. Finally, a numerical example is presented to depict the advantages of the proposed control algorithm. An application in the rota

... Show More
View Publication
Scopus (141)
Crossref (129)
Scopus Clarivate Crossref
Publication Date
Mon Dec 26 2011
Journal Name
Journal Of Intelligent Material Systems And Structures
Design and modeling magnetorheological directional control valve
...Show More Authors

Directional control valves are designed to control direction of flow, while actuators maintain required speeds and precise positions. Magnetorheological (MR) fluid is a controllable fluid. Utilizing the MR fluid properties, direct interface between magnetic fields and fluid power is possible, without the need for mechanical moving parts like spools. This study proposes a design of a four-way three-position MR directional control valve, presents a method of building, and explains the working principle of the valve. An analysis of the design and finite elements using finite element method of magnetism (FEMM) software was performed on each valve. The magnetic circuit of the MR valve was analyzed and the performance was simulated. The

... Show More
View Publication
Scopus (27)
Crossref (20)
Scopus Clarivate Crossref