A cantilever beam is made from composite material which is consist of (matrix: polyester) and (particles: Silicon-Carbide) with different volume fraction of particles. A force is applied at the free end of beam with different values. The experimental maximum deflection of beam which occurs at the point of the applied load is recorded. The deflection and slope of beam are analyzed by using FEM modeling. MATLAB paltform is built to assemble the equations, vector and matrix of FEM and solving the unknown variables (deflection and slope) at each node. Also ANSYS platform is used to modeling beam in finite element and solve the problem. The numerical methods are used to compare the results with the theoretical and experimental data. A good agreement is observed between the above methods. The Increase in volume fraction of particles results in increasing the modulus of elasticity and decreasing the deflection of beam. An equation is suggested for modulus of elasticity as functions of volume fraction.
In this study, the thermal buckling behavior of composite laminate plates cross-ply and angle-ply all edged simply supported subjected to a uniform temperature field is investigated, using a simple trigonometric shear deformation theory. Four unknown variables are involved in the theory, and satisfied the zero traction boundary condition on the surface without using shear correction factors, Hamilton's principle is used to derive equations of motion depending on a Simple Four Variable Plate Theory for cross-ply and angle-ply, and then solved through Navier's double trigonometric sequence, to obtain critical buckling temperature for laminated composite plates. Effect of changing some design parameters such as, ortho
... Show MoreIn this study, the response of ten composite post-tensioned concrete beams topped by a reinforced concrete deck with adequate reinforcing shear connectors is investigated. Depending on the concrete compressive strength of the deck slab (20, 30, and 40 MPa), beams are grouped into three categories. Seven of these beams are exposed to a fire attack of 700 and 800 °C temperature simultaneously with or without the presence of a uniformly distributed sustained static loading. After cooling back to ambient temperature, these composite beams are loaded up to failure, using a force control module, by monotonic static loading in a four-point-bending setup with two symmetrical concentrated loads applied in
The synthesis of new substituted cobalt Phthalocyanine (CoPc) was carried out using starting materials Naphthalene-1,4,5, tetracarbonic acid dianhydride (NDI) employing dry process method. Metal oxides (MO) alloy of (60%Ni3O4 40%-Co3O4 ) have been functionalized with multiwall carbon nanotubes (F-MWCNTs) to produce (F-MWCNTs/MO) nanocomposite (E2) and mixed with CoPc to yield (F-MWCNT/CoPc/MO) (E3). These composites were investigated using different analytical and spectrophotometric methods such as 1H-NMR (0-18 ppm), FTIR spectroscopy in the range of (400-4000cm-1), powder X-rays diffraction (PXRD, 2θ o = 10-80), Raman spectroscopy (0-4000 cm-1), and UV-Visib
... Show MoreA lotic ecosystem is considered a source of carbon dioxide (CO2) in the atmosphere where it becomes supersaturated with CO2, which contributes to the global carbon cycle. To enhance our comprehension of the roles of CO2 in rivers, an outdoor experiment was designed with controlled carbon source inputs to investigate the roles of the dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the phytoplankton community. Plastic enclosures were installed in the Tigris River within Baghdad for that goal. Samples were collected on the first day, as well as on the 5th and the 12th days from 14 enclosures. The enclosures were treated by artificial glucose (C6H12O6) (10, 20, 30mg/ l) as DOC sources, while sodium bicarbonate (NaHCO3) (1
... Show MoreIn this study lattice parameters, band structure, and optical characteristics of pure and V-doped ZnO are examined by employing (USP) and (GGA) with the assistance of First-principles calculation (FPC) derived from (DFT). The measurements are performed in the supercell geometry that were optimized. GGA+U, the geometrical structures of all models, are utilized to compute the amount of energy after optimizing all parameters in the models. The volume of the doped system grows as the content of the dopant V is increased. Pure and V-doped ZnO are investigated for band structure and energy bandgaps using the Monkhorst–Pack scheme's k-point sampling techniques in the Brillouin zone (G-A-H-K-G-M-L-H). In the presence of high V content, the ban
... Show MoreMetal complexes of Cu (II), Fe (III) and Mn (II) with Quinaldic acid (L1) and 1, 10-Phenathroline (L2) are synthesized and characterized by standaral physic- chemical procedures (element analysis, metal analysis, FTIR, Uv-Vis, magnetic moment and conductometeric measurements). On the base of these studies, mononuclear and six coordinated octahedral geometry and nonelectrolyte of these complexes have been proposed. The standard heat of formation (?Hºf) and binding energy (?Eb) for the free ligands and their complexes are calculated by using the PM3 method at 273K of Hyperchem.-8 program. The complexes are more stable than their ligands. Moreover, the electrostatic potential of free ligands are measured to investigate the reactive site of th
... Show MoreSteel fiber aluminum matrix composites were prepared by atomization technique. Different air atomization conditions were considered; which were atomization pressure and distance between sample and nozzle. Tensile stress properties were studied. XRF and XRD techniques were used to study the primary compositions and the structure of the raw materials and the atomized products. The tensile results showed that the best reported tensile strength observed for an atomization pressure equal to 4 mbar and sample to nozzle distance equal to 12 cm. Young modulus results showed that the best result occurred with an air atomization pressure equal to 8 mbar and sample to nozzle distance equal to 16cm
A particulate polymer composite material was prepared by reinforcing with the Aluminum Oxide (Al2O3) or Aluminum (Al) metallic particles with a particle size of (30) µm to an unsaturated Polyester Resin with a weight fraction of (5%, 10%, 15%, 20%).
Tensile test results showed the maximum value of elastic modulus reached (2400MPa.) in the case of reinforcing with (Al) particles with weight fraction (20%) and (1500 MPa.) in the case of reinforcing with (Al2O3) particles of the same weight fraction.
When the impact and the flexural strength tests were done, the results showed that flexural strength (F.S), maximum shear stress (τmax), impact strength
... Show MoreThe first studies on shocks and vibrations were carried out at the beginning of the 1930s to improve the behavior of buildings during earthquakes. Vibration tests on aircraft were developed from 1940 to verify the resistance of parts and equipments prior to their first use. Flutter is a well-known example of dynamic aero elasticity, where when oscillation of structure interacted with unsteady aerodynamic forces the flutter will occur. Vibration on any structure without damping means that self-harmonic oscillation will occur, and in most cases the oscillation may start to increase until structural failure. This behavior is very similar to resonance phenomena if only the oscillation is being studied as a vibration case. In vibration suppre
... Show More