Preferred Language
Articles
/
joe-1408
Thermal Buckling of Laminated Composite Plates Using a Simple Four Variable Plate Theory

In this study, the thermal buckling behavior of composite laminate plates cross-ply and angle-ply all edged simply supported subjected to a uniform temperature field is investigated, using a simple trigonometric shear deformation theory. Four unknown variables are involved in the theory, and satisfied the zero traction boundary condition on the surface without using shear correction factors, Hamilton's principle is used to derive equations of  motion depending on a Simple Four Variable Plate Theory for cross-ply and angle-ply, and then solved through Navier's double trigonometric sequence, to obtain critical buckling temperature for laminated composite plates. Effect of changing some design parameters such as, orthotropy ratio (E1/E2), aspect ratio (a/b),  thickness ratio (a/h), thermal expansion coefficient ratio (α2/α1), are investigated, which have the same behavior and good agreement when compared with previously published results with maximum discrepancy (0.5%).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Engineering
A Five Variable Refined Plate Theory For Thermal Buckling Analysis Uniform And Nonuniform Of Cross-Ply Laminated Plates

This research is devoted to investigating the thermal buckling analysis behaviour of laminated composite plates subjected to uniform and non-uniform temperature fields by applying an analytical model based on a refined plate theory (RPT) with five unknown independent variables. The theory accounts for the parabolic distribution of the transverse shear strains through the plate thickness and satisfies the zero-traction boundary condition on the surface without using shear correction factors; hence a shear correction factor is not required. The governing differential equations and associated boundary conditions are derived by using the virtual work principle and solved via Navier-type analytical procedure to obtain critica

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Nov 21 2019
Journal Name
Journal Of Engineering
Thermal Buckling of Angle-Ply Laminated Plates Using New Displacement Function

ABSTRACT

Critical buckling temperature of angle-ply laminated plate is developed using a higher-order displacement field. This displacement field used by Mantari et al based on a constant ‘‘m’’, which is determined to give results closest to the three dimensions elasticity (3-D) theory. Equations of motion based on higher-order theory angle ply plates are derived through Hamilton, s principle, and solved using Navier-type solution to obtain critical buckling temperature for simply supported laminated plates. Changing (α2/ α1) ratios, number of layers, aspect ratios, E1/E2 ratios for thick and thin plates and their effect on thermal

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Engineering
Thermal Buckling Analysis of Laminated Composite plates with General Elastic Boundary Supports

In this study, the modified Rayleigh-Ritz method and Fourier series are used to determine the thermal buckling behavior of laminated composite thin plates with a general elastic boundary condition applied to in-plane uniform temperature distribution depending upon classical laminated plate theory(CLPT). A generalized procedure solution is developed for the Rayleigh-Ritz method combined with the synthetic spring technique. The transverse displacement of the orthotropic rectangular plates is not a different term as a new shape expansion of trigonometric series. In this solution approach, the plate transverse deflection and rotation due to bending are developed into principle Fourier series with a sufficient smoothness auxi

... Show More
Crossref (5)
Crossref
View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Buckling Analysis of Stiffened and Unstiffened Laminated Composite Plates

The present study focused mainly on the analysis of stiffened and unstiffened composite laminated plates subjected to buckling load. Analytical, numerical and experimental analysis for different cases has been considered. The experimental investigation is to manufacture the laminates and to find mechanical properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus. The compressive test was carried to find the critical buckling load of plate. The design parameters of the laminates such as aspect ratio, thickness ratio, boundary conditions and number of stiffeners were investigated using high order shear deformation theory (HOST) and Finite element coded by ANSYS .The main conclusion was the buckling load c

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Tue Jan 31 2017
Journal Name
Journal Of Engineering
Static Analysis of Laminated Composite Plate using New Higher Order Shear Deformation Plate Theory

 In the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
Buckling Analysis of Laminated Composite Plate with Different Boundary Conditions using modified Fourier series

Buckling analysis of a laminated composite thin plate with different boundary conditions subjected to in-plane uniform load are studied depending on classical laminated plate theory; analytically using (Rayleigh-Ritz method). Equation of motion of the plates was derived using the principle of virtual work and solved using modified Fourier displacement function that satisfies general edge conditions. The eigenvalue problem generated by using Ritz method, the set of linear algebraic equations can be solved using MATLAB for symmetric and anti-symmetric, cross and angle-ply laminated plate considering some design parameters such as aspect ratios, number of layers, lamination type and orthotropic ratio. The results obtained g

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Buckling Analysis of Composite Plates under Thermal and Mechanical Loading

Buckling analysis of composite laminates for critical thermal (uniform and linear) and mechanical loads is reported here. The objective of this work is to carry out theoretical investigation of buckling analysis of composite plates under thermomechanical loads, and experimental investigation under mechanical loads. The analytical investigation involved certain mathematical preliminaries, a study of equations of orthotropic elasticity for classical laminated plate theory (CLPT), higher order shear deformation plate theory (HSDT) , and numerical analysis (Finite element method), then the equation of motion are derived and solved using Navier method and Levy method for symmetric and anti-symmetric cross-ply and angle-ply laminated plates t

... Show More
View Publication Preview PDF
Publication Date
Tue May 16 2023
Journal Name
Journal Of Engineering
FREE VIBRATION ANALYSIS OF COMPOSITE LAMINATED PLATES USING HOST 12

This paper presents an application of a Higher Order Shear Deformation Theory (HOST 12) to problem
of free vibration of simply supported symmetric and antisymmetric angle-ply composite laminated plates.
The theoretical model HOST12 presented incorporates laminate deformations which account for the effects
of transverse shear deformation, transverse normal strain/stress and a nonlinear variation of in-plane
displacements with respect to the thickness coordinate – thus modeling the warping of transverse crosssections more accurately and eliminating the need for shear correction coefficients. Solutions are obtained in
closed-form using Navier’s technique by solving the eigenvalue equation. Plates with varying number of

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Buckling and Pre Stressed Dynamics Analysis of Laminated Composite Plate with Different Boundary Conditions

Critical buckling and natural frequencies behavior of laminated composite thin plates subjected to in-plane uniform load is obtained using classical laminated plate theory (CLPT). Analytical investigation is presented using Ritz- method for eigenvalue problems of buckling load solutions for laminated symmetric and anti-symmetric, angle and cross ply composite plate with different elastic supports along its edges. Equation of motion of the plate was derived using principle of virtual work and solved using modified Fourier displacement function that satisfies general edge conditions. Various numerical investigation were studied to exhibit a convergence and accuracy of the present solution for considering some design parameters such as edge

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Engineering
Stability and Dynamic Analysis of Laminated Composite Plates

Buckling and free vibration analysis of laminated rectangular plates with uniform and non uniform distributed in-plane compressive loadings along two opposite edges is performed using the Ritz method. Classical laminated plate theory is adopted. The static component of the applied in- plane loading are assumed to vary according to uniform, parabolic or linear distributions. Initially, the plate membrane problem is solved using the Ritz method; subsequently, using Hamilton’s variational principle, linear homogeneous algebraic equations in terms of unknown are generated, the set of linear algebraic equations can be solved as an Eigen-value problem. Buckling loads for laminated plates with different combinations of bounda

... Show More
View Publication Preview PDF