The effect of electrolysis operating parameters on the removal efficiency of cadmium from a simulated wastewater was studied by adopting response surface methodology combined with Box–Behnken Design. As a new electrode design, spiral-wound woven wire mesh rotating cylinder electrode was used for cadmium removal. Current (240–400 mA), rotation speed (200–1000 rpm), initial cadmium concentration (200–600ppm), and cathode mesh number (30–60) were chosen as independent variables while the removal efficiency of cadmium was considered as a response function. The results revealed that the rotation speed has the major effect on the removal efficiency of cadmium. Regression analysis showed good fit of the experimental data to the second-order polynomial model with a coefficient of determination (R2) value of 0.9931 and Fisher F-value of 89.82. The optimal conditions within the experimental ranges of the independent variables were a current of 345 mA, a rotation speed of 800 rpm, an initial cadmium concentration of 500 ppm, and a mesh number of 30, where concentration of cadmium was diminished from 500 to 8 ppm after 60 min of electrolysis with a specific energy consumption of 3.12 kWh kg−1 and a current efficiency of 41%.
The heavy metal cadmium is extremely harmful to both humans and animals. Zinc supplementation protects the biological system and reduces cadmium-induced toxicity. This study aimed to determine whether zinc chloride (ZnCl2) could protect male mice with the damaged liver induced by cadmium chloride (CdCl2). The protective role of zinc chloride and expression of the metallothionein (MT), Ki-67, and Bcl-2 apoptotic proteins in hepatocytes were studied after subchronic exposure of mice to cadmium chloride for 21 days. Thirty male mice were randomly categorized into 6 groups (5 mice/group) as follows: a control group that did not receive any treatment, a group given ZnCl2 at 10 mg/kg alone, and two groups received ZnCl2 (10 mg/kg) i
... Show MoreTrickle bed reactor was used to study the hydrogenation of nitrobenzene over Ni/SiO2 catalyst. The catalyst was prepared using the Highly Dispersed Catalyst (HDC) technique. Porous silica particles (capped cylinders, 6x5.5 mm) were used as catalyst support. The catalyst was characterized by TPR, BET surface area and pore volume, X-ray diffraction, and Raman Spectra. The trickle bed reactor was packed with catalyst and diluted with fine glass beads in order to decrease the external effects such as mass transfer, heat transfer and wall effect. The catalyst bed dilution was found to double the liquid holdup, which increased the catalyst wetting and hence, the gas-liquid mass transfer rate. The main product of the hydrogenation reaction of n
... Show MoreThe central marshes are one of the most important wetlands/ecosystems in the southern area of Iraq. This study evaluates the bed soil's mechanical, physical, and chemical properties at certain southern Iraqi central marshes sites. This was conducted to investigate their types and suitability for enhancing the agricultural reality of most field crops and for construction purposes. Soil samples were collected from 15 sites at 10-100 cm depth. Hence, numerous parameters were determined: index properties, unconfined compressive strength, direct shear strength, consolidation, texture, and sieve analysis, water content, specific gravity, dry density, permeability, pH, total soluble salts (TSS), organic materials (OM) and total
... Show MoreGranular carbon can be used after conventional filtration of suspended matter or, as a combination of filtration - adsorption medium. The choice of equipment depends on the severity of the organic removal problem, the availability of existing equipment, and the desired improvement of adsorption condition.
Design calculations on dechlorination by granular - carbon filters considering the effects of flow rate, pH , contact time, head loss and bed expansion in backwashing , particle size, and physical characteristics were considered assuming the absence of bacteria or any organic interface .
An experimental and numerical study has been carried out to investigate the heat transfer by natural convection and radiation in a two dimensional annulus enclosure filled with porous media (glass beads) between two horizontal concentric cylinders. The outer cylinders are of (100, 82 and70mm) outside diameters and the inner cylinder of 27 mm outside diameter with (or without) annular fins attached to it. Under steady state condition; the inner cylinder surface is maintained at a high temperature by applying a uniform heat flux and the outer cylinder surface at a low temperature inside a freezer. The experiments were carried out for an annulus filled with
glass beads at a range of modified Rayleigh number (4.9 ≤ Ra≤ 69), radiation
Particulate matter (PM) emitted from diesel engine exhaust have been measured in terms of mass, using
99.98 % pure ethanol blended directly, without additives, with conventional diesel fuel (gas – oil),to
get 10 % , 15 %, 20 % ethanol emulsions . The resulting PM collected has been compared with those
from straight diesel. The engine used is a stationary single cylinder, variable compression ratio Ricardo
E6/US. This engine is fully instrumented and could run as a compression or spark ignition.
Observations showed that particulate matter (PM) emissions decrease with increasing oxygenate
content in the fuel, with some increase of fuel consumption, which is due to the lower heating value of
ethanol. The reduction in
In the present work the performance of semifluidized bed adsorber was evaluated for removal of phenolic compound from wastewater using commercial activated carbon as adsorbent. P-chlorophenol (4-Chlorophenol) and o-cresol (2-methylphenol) was selected as a phenolic compound for that purpose. The phenols percent removal, in term of breakthrough curves were studied as affected by hydrodynamics limitations which include minimum and maximum semifluidization velocities and packed bed formation in the column by varying various parameters such as inlet liquid superficial velocity (from Uminsf to 8Uminsf m/s), and retaining grid (sometimes referred to as adsorbent loading) to initial static bed height ratio (from 3-4.5). In
... Show MoreGold, silver and nickel used as electrodes in the fabrication of perovskite solar cell by using thermal evaporation deposition method with direct structure FTO\ TiO2\ MAPbI3\ spiro-MeOTAD\ metal electrode. The cell efficiency was compared between the electrodes material as a function of time to explaining the effect of these metals electrode on cell performance, X-ray diffraction pattern showed that the samples that contain gold and nickel do not contain a compound indicating the interaction of the metal with the components of the cell or the formation of a new compound, while in the cell containing silver it was found that silver iodide is fo