The research aims to identify the impact of using the electronic participatory learning strategy according to internet programs in learning some basic basketball skills for middle first graders according to the curricular course, and the sample of research was selected in the deliberate way of students The first stage of intermediate school.As for the problem of research, the researchers said that there is a weakness in the levels of school students in terms of teaching basketball skills, which prompted the researchers to create appropriate solutions by using a participatory learning strategy.The researchers imposed statistically significant differences between pre and post-test tests, in favor of the post tests individually and in favor of the electronic participatory learning strategy in learning some basic skills in basketball. One of the most important conclusions and recommendations made by the researchers are using the e-participatory learning strategy has shown improvement in basketball skills learning and directing the attention of teachers and trainers in the field of sports using the e-participatory learning strategy as a means of learning basic basketball skills.
Recommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness o
... Show MoreFace detection is one of the important applications of biometric technology and image processing. Convolutional neural networks (CNN) have been successfully used with great results in the areas of image processing as well as pattern recognition. In the recent years, deep learning techniques specifically CNN techniques have achieved marvellous accuracy rates on face detection field. Therefore, this study provides a comprehensive analysis of face detection research and applications that use various CNN methods and algorithms. This paper presents ten of the most recent studies and illustrate the achieved performance of each method.
Correct grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreThe preparation and spectral characterization of complexes for Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) ions with new organic heterocyclic azo imidazole dye as ligand 2-[(2`-cyano phenyl) azo ]-4,5-diphenyl imidazole ) (2-CyBAI) were prepared by reacting a dizonium salt solution of 2-cyano aniline with 4,5-diphenyl imidazole in alkaline ethanolic solution .These complexes were characterized spectroscopically by infrared and electronic spectra along with elemental analysis‚ molar conductance and magnetic susceptibility measurements. The data show that the ligand behaves a bidantate and coordinates to the metal ion via nitrogen atom of azo and with imidazole N3 atom. Octahedral environment is suggested for all metal complex
... Show MoreNew bidentate Schiff base ligand (L) namely [(Z)-3-(2-oxoindolin-3ylildeneamino)benzoic acid] type (NO) was prepared via condensation of isatin and 3-amino benzoic acid in ethanol as a solvent in existence of drops of (glac. CH3COOH). The new ligand (L) was characterized base on elemental microanalysis, FT-IR, UV-Vis, 1H-NMR spectra along with melting point. Ligand complexes in general formula [M(L)2Cl2]. H2O, where: MII = Co, Cu, Cd, and Hg; L= C15H10 N2O3 were synthesized and identified by FT-IR, UV-Vis, 1H-NMR (for Cd complex only) spectra, atomic absorption, chloride content along with molar conductivity and magnetic susceptibility. It was found that the ligand behaves as bidentate on complexation via (N) atom of imine group an
... Show MoreThe synthesis of [1,2-diaminoethane-N,N'-bis(2-butylidine-3- onedioxime)] [II2L] and its cobalt(II), nickel(II), copper(II), palladium(II), platinum(II, IV), zinc(II), cadmium(II) and mercury(II) complexes is reported. The compounds were characterised by elemental analyses, spectroscopic methods [I.R, UV-Vis, ('H NMR. and EI mass for H2L)], molar conductivities, magnetic moments. I.R. spectra show that (H2L) behaves as a neutral or mononegative ligand depending on the nature of the metal ions. The molar conductance of the complexes in (DMSO) is commensurate with their ionic character. On the basis of the above measurements, a square planar geometry is proposed for NOD, Pd(II), and Pt(II) complexes, and an octahedr-al structure with trans
... Show MoreThe main objective of e-learning platforms is to offer a high quality instructing, training and educational services. This purpose would never be achieved without taking the students' motivation into consideration. Examining the voice, we can decide the emotional states of the learners after we apply the famous theory of psychologist SDT (Self Determination Theory). This article will investigate certain difficulties and challenges which face e-learner: the problem of leaving their courses and the student's isolation.
Utilizing Gussian blending model (GMM) so as to tackle and to solve the problems of classification, we can determine the learning abnormal status for e-learner. Our framework is going to increase the students’ moti
Audio-visual detection and recognition system is thought to become the most promising methods for many applications includes surveillance, speech recognition, eavesdropping devices, intelligence operations, etc. In the recent field of human recognition, the majority of the research be- coming performed presently is focused on the reidentification of various body images taken by several cameras or its focuses on recognized audio-only. However, in some cases these traditional methods can- not be useful when used alone such as in indoor surveillance systems, that are installed close to the ceiling and capture images right from above in a downwards direction and in some cases people don't look straight the cameras or it cannot be added in some
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
Predicting the network traffic of web pages is one of the areas that has increased focus in recent years. Modeling traffic helps find strategies for distributing network loads, identifying user behaviors and malicious traffic, and predicting future trends. Many statistical and intelligent methods have been studied to predict web traffic using time series of network traffic. In this paper, the use of machine learning algorithms to model Wikipedia traffic using Google's time series dataset is studied. Two data sets were used for time series, data generalization, building a set of machine learning models (XGboost, Logistic Regression, Linear Regression, and Random Forest), and comparing the performance of the models using (SMAPE) and
... Show More