The study focused on examining the behavior of six concrete beams that were reinforced with glass fiber-reinforced polymer (GFRP) bars to evaluate their performance in terms of their load-carrying capacity, deflection, and other mechanical properties. The experimental investigation would provide insights into the feasibility and effectiveness of GFRP bars as an alternative to traditional reinforcement materials like steel bars in concrete structures. The GFRP bars were used in both the longitudinal and transverse directions. Each beam in the study shared the following specifications: an overall length of 2,400 mm, a clear span of 2,100 mm, and a rectangular cross-section measuring 300 mm in width and 250 mm in depth. To apply loads for testing, two-point static loads were placed at the middle third of the beam’s span, creating a shear span of 700 mm in length. The beams were categorized into three groups depending on the GFRP longitudinal reinforcement ratio in the tension and compression zones of the section. GFRP bars with a diameter of 15 mm were employed as longitudinal reinforcement, while closed GFRP stirrups with a diameter of 8 mm at 100 mm were utilized as transverse reinforcement throughout the structural element. Test results have indicated that the ultimate load capacity of doubly GFRP-reinforced concrete beams varies compared to singly GFRP-reinforced beams. The range of variation observed is between an increase of 8% and a decrease of 4%. Accordingly, the contribution of the GFRP bars in the compression zone is insignificant and could be ignored in design calculations. It was observed that the loading level at which crack spacing stabilized ranged between 31.3 and 87% of the experimental failure load. It seems that the crack spacing decreased with the increase in the reinforcement ratio.
In a hybrid cooling solar thermal systems , a solar collector is used to convert solar energy into heat energy in order to super heat the refrigerant leaving the compressor, and this process helps in the transformation of refrigerant state from gaseous state to the liquid state in upper two-thirds of the condenser instead of the lower two-thirds such as in the traditional air-conditioning systems and this will reduce the energy needed to run the process of cooling .In this research two systems with a capacity of 2 tons each were used, a hybrid air-conditioning system with an evacuated tubes solar collector and a traditional air-conditioning system . The refrigerant of each type was R22.The comparison was in the amou
... Show MoreThe research aims to determine the role of green human resource management dimensions of (employment Green, training and development, green, performance evaluation Green, compensation and green bonuses) in the performance leadership of the organization dimensions of (advance planning, efficiency, effectiveness, index pioneering, renovation and modernization), Search of paramount importance because it addresses an important and modern issue in performance leadership, namely green management of human resources, aware of the importance of the subject and expected results of the company under study, an analysis of the data obtained through field visits in
... Show MoreThe influence of fiber orientation and water absorption on fatigue crack growth resistance for cold cure acrylic (PMMA) reinforced by chopped and woven -glass-fibers were investigated. A weight of 2 g for chopped fibers and the same weight for woven -glass-fibers (one layer) were used to prepare samples. Some of these samples would storage in dry condition; the others were immersed in water for 15 days. Fatigue test was carried out. The results shows that, for PMMA, the initial bending stress for dry specimen was 3.392 N/cm2 and the number of cycles were 1364, the initial bending stress for wet samples was 4.20 N/cm2, and the number of cycles was 2411. The samples would cut in two pieces because of the cracks would propagated fast during
... Show MoreTo evaluate the bioactivity and the cytocompatibility of experimental Bioglass-reinforced polyethylene-based root-canal filling materials. The thermal properties of the experimental materials were also evaluated using differential scanning calorimetry, while their radiopacity was assessed using a grey-scale value (GSV) aluminium step wedge and a phosphor plate digital system. Bioglass 45S5 (BAG), polyethylene and Strontium oxide (SrO) were used to create tailored composite fibres. The filler distribution within the composites was assessed using SEM, while their bioactivity was evaluated through infrared spectroscopy (FTIR) after storage in simulated body fluid (SBF). The radiopacity of the composite fibres and their thermal properties were
... Show MoreBackground: The daily cleaning routine of the silicone maxillofacial prostheses by the patient may cause some alteration in the materials properties. The purpose of the present study was to investigate the effect of different disinfection procedures on some properties of silicon dioxide reinforced Cosmesil M511 HTV maxillofacial silicone. Materials and Methods: One hundred and sixty (160) specimens were prepared by mixing 5% SiO2 nano particles and 0.5% intrinsic cream color into the silicone polymer according to manufacturer's instructions. Specimens were divided into 4 groups according to the performed test (tear strength, surface hardness, surface roughness and color) with 40 specimens each. Each group was further subdivided according to
... Show MoreThis paper presents the results of experimental investigation carried out on concrete model piles to study the behaviour of defective piles. This was achieved by employing non-destructive tests using ultrasonic waves. It was found that the reduction in pile stiffness factor is found to be about (26%) when the defect ratio increased from (5%) to (15%). The modulus of elasticity reduction factor as well as the dynamic modulus of elasticity reduction factor increase with the defect ratio
In past years, structural pavement solution has been combined with destructive testing; these destructive methods are being replaced by non-destructive testing methods (NDT). Because the destructive test causes damage due to coring conducted for testing and also the difficulty of adequately repairing the core position in the field. Ultrasonic pulse velocity was used to evaluate the strength and volumetric properties of asphalt concrete, of binder course. The impact of moisture damage and testing temperature on pulse velocity has also been studied. Data were analyzed and modeled. It was found that using non-destructive testing represented by pulse velocity could be useful to predict the quality of asphalt c
... Show MoreWaste materials might be utilized in various applications, such as sustainable roller compacted concrete pavements (RCCP), to lessen the negative environmental consequences of construction waste. The impacts of utilizing (brick, thermostone, granite, and ceramic) powders on the mechanical characteristics of RCCP are investigated in this study. To achieve this, the waste materials were crushed, grounded, and blended before being utilized as filler in the RCCP. After the mixes were prepared, compressive strength, splitting tensile strength, flexural strength, water absorption, density, and porosity were all determined. According to the research results, adding some of these powders, mainly brick and granite powder, enhances the mechanical
... Show More