The study focused on examining the behavior of six concrete beams that were reinforced with glass fiber-reinforced polymer (GFRP) bars to evaluate their performance in terms of their load-carrying capacity, deflection, and other mechanical properties. The experimental investigation would provide insights into the feasibility and effectiveness of GFRP bars as an alternative to traditional reinforcement materials like steel bars in concrete structures. The GFRP bars were used in both the longitudinal and transverse directions. Each beam in the study shared the following specifications: an overall length of 2,400 mm, a clear span of 2,100 mm, and a rectangular cross-section measuring 300 mm in width and 250 mm in depth. To apply loads for testing, two-point static loads were placed at the middle third of the beam’s span, creating a shear span of 700 mm in length. The beams were categorized into three groups depending on the GFRP longitudinal reinforcement ratio in the tension and compression zones of the section. GFRP bars with a diameter of 15 mm were employed as longitudinal reinforcement, while closed GFRP stirrups with a diameter of 8 mm at 100 mm were utilized as transverse reinforcement throughout the structural element. Test results have indicated that the ultimate load capacity of doubly GFRP-reinforced concrete beams varies compared to singly GFRP-reinforced beams. The range of variation observed is between an increase of 8% and a decrease of 4%. Accordingly, the contribution of the GFRP bars in the compression zone is insignificant and could be ignored in design calculations. It was observed that the loading level at which crack spacing stabilized ranged between 31.3 and 87% of the experimental failure load. It seems that the crack spacing decreased with the increase in the reinforcement ratio.
Epoxy resin has many chemical features and mechanical properties, but it has a small elongation at break, low impact strength and crack propagation resistance, i.e. it exhibits a brittle behavior. In the current study, the influence of adding kaolin with variable particle size on the mechanical properties (flexural modulus E, toughness Gc, fracture toughness Kc, hardness HB, and Wear rate WR) of epoxy resin was evaluated. Composites of epoxy with varying concentrations (0, 10, 20, 30, 40 weights %) of kaolin were prepared by hand-out method. The composites showed improved (E, Gc, Kc, HB, and WR) properties with the addition of filler. Also, similar results were observed with the decrease in particle size. In addition, in this study, mult
... Show MoreThe construction of embankment for roadway interchange system at urban area is restricted due to the large geometry requirements, since the value of land required for such construction is high, and the area available is limited as compared to rural area. One of the optimum solutions to such problem is the earth reinforcement technique which requires a limited area for embankment construction. Gypseous soil from Al-Anbar governorate area was obtained and subjected to various physical and chemical analysis to determine it is properties. A laboratory model box of 50x50x25 cm was used as a representative embankment; soil has been compacted in five layers at maximum dry density (modified compaction) and an aluminum reinforcement strips were i
... Show MoreThe idea of using slender Reinforced Concrete (RC) columns with cross-shaped (+-shaped) instead of columns with square-shaped was discussed in this paper. The use of +-shaped columns provides many architectural and structural advantages, such as avoiding prominent columns edges and improved the structural response of member. Therefore, this study explores the structural response of slender +-shaped columns experimentally and numerically by nonlinear finite element analysis using Abaqus simulation tools. The results showed an excellent convergence in strength between numerical and test results with an average standard deviation of 0.05 and 0.07. Besides that, the use of +-shaped column
An experiment was conducted to study how SAE 50 engine oil contaminated with diesel fuel affects engine performance. The engine oil was contaminated with diesel fuel at concentrations of 0%, 1%, and 3%. The following performance characteristics were studied: brake-specific fuel consumption, brake thermal efficiency, friction power, and exhaust gas temperature. Each treatment was tested three times. The three treatments (0%, 1%, and 3%) were analyzed statistically with a one-way ANOVA model at the 5% probability level to determine if the three treatments produced significant differences in engine performance. The statistical results showed that there were significant differences in engine performance metrics among the three treatments. The 3
... Show MoreThe aim the research that definition on the impact a lot of Analysis and evaluation jobs impact in support the employees performance the property that are Analysis and evaluation jobs is one of the jobs however of the human resource management on organization and the impact footpace big on the chractericties and performance of the people and the impact that success of the organization , And here problem stool of the research in the omission the role for the Analysis and evaluation jobs impact in support the employees performance from the upward management in the organization , Polls were adopted as tools for obtaining data and the Depart
... Show MoreThe present paper deals with experimental investigation of the performance of air cooled split air conditioner, with evaporative water mist pre cooling to increase the cooling capacity and reduce the consumption power under hot and dry climate. This investigation considers how the performance can be enhanced by using water mist to pre-cool ambient air entering the condensers by adiabatic cooling process which depends on the ambient air wet bulb temperature; as well the condensing temperature and condensing pressure will be decreased accordingly. So the cooling capacity would be increased and consumption power would be decreased, consequently the energy ratio, EER would be improved. The performance of air cooled air conditioner with water
... Show More
Experimental investigation of the influence of inserting the metal foam to the solar chimney to induce natural ventilation are described and analyzed in this work. To carry out the experimental test, two identical solar chimneys (without insertion of metal foam and with insertion of metal foam) are designed and placed facing south with dimensions of length× width× air gap (2 m× 1 m× 0.2 m). Four incline angles are tested (20o,30o,45o,60o) for each chimney in Baghdad climate condition (33.3o latitude, 44.4o longitude) on October, November, December 2018. The solar chimney performance is investigated by experimentally recording absorber pl
... Show MoreThe aim of this study to identity using Daniel's model and Driver’s model in learning a kinetic chain on the uneven bars in the artistic gymnastics for female students. The researchers used the experimental method to design equivalent groups with a preand post-test, and the research community was identified with the students of the third stage in the college for the academic year 2020-2021 .The subject was, (3) class were randomly selected, so (30) students distributed into (3) groups). has been conducted pretesting after implementation of the curriculum for (4) weeks and used the statistical bag of social sciences(SPSS)to process the results of the research and a set of conclusions was reached, the most important of which is t
... Show MoreThe local asphalt concrete fracture properties represented by the fracture energy, J-integral, and stress intensity factor are calculated from the results of the three point bending beam test made for pre notches beams specimens with deformation rate of 1.27 mm/min. The results revealed that the stress intensity factor has increased by more than 40% when decreasing the testing temperature 10˚C and increasing the notch depth from 5 to 30mm. The change of asphalt type and content have a limited effect of less than 6%.