By use the notions pre-g-closedness and pre-g-openness we have generalized a class of separation axioms in topological spaces. In particular, we presented in this paper new types of regulαrities, which we named ρgregulαrity and Sρgregulαrity. Many results and properties of both types have been investigated and have illustrated by examples.
Form the series of generalization of the topic of supra topology is the generalization of separation axioms . In this paper we have been introduced (S * - SS *) regular spaces . Most of the properties of both spaces have been investigated and reinforced with examples . In the last part we presented the notations of supra *- -space ( =0,1) and we studied their relationship with (S * - SS *) regular spaces.
Abstract. In this work, some new concepts were introduced and the relationship between them was studied. These concepts are filter directed-toward, nano-closure-directed-toward and nano-closure-converge to point, and some theories and results about these concepts were presented. A definition almost-nano-converges for set, almost-nano-cluster-point, and definition of quasi-nano-Hausdorff-closed and was also called nano-Hausdorff-closed relative, were also presented several theories related to these definitions were presented and the relationship between them was studied . We also provided other generalizations, including nano closure continuous mappings and it was also called as nano-weaklycontinuous- mappings, as well as providing a definit
... Show MoreThe main idea of this paper is to define other types of a fuzzy local function and study the advantages and differences between them in addition to discussing some definitions of finding new fuzzy topologies. Also in this research, a new type of fuzzy closure has been defined, where the relation between the new type and different types of fuzzy local function has been studied
Abstract. Fibrewise micro-topological spaces be a useful tool in various branches of mathematics. These mathematical objects are constructed by assigning a micro-topology to each fibre from a fibre bundle. The fibrewise micro-topological space is then formed by taking the direct limit of these individual micro-topological spaces. It can be adapted to analyze various mathematical structures, from algebraic geometry to differential equations. In this study, we delve into the generalizations of fibrewise micro-topological spaces and explore the applications of these abstract structures in different branches of mathematics. This study aims to define the fibrewise micro topological space through the generalizations that we use in this paper, whi
... Show MoreAccording to the theory of regular geometric functions, the relevance of geometry to analysis is a critical feature. One of the significant tools to study operators is to utilize the convolution product. The dynamic techniques of convolution have attracted numerous complex analyses in current research. In this effort, an attempt is made by utilizing the said techniques to study a new linear complex operator connecting an incomplete beta function and a Hurwitz–Lerch zeta function of certain meromorphic functions. Furthermore, we employ a method based on the first-order differential subordination to derive new and better differential complex inequalities, namely differential subordinations.
The idea of ech fuzzy soft bi-closure space ( bicsp) is a new one, and its basic features are defined and studied in [1]. In this paper, separation axioms, namely pairwise, , pairwise semi-(respectively, pairwise pseudo and pairwise Uryshon) - fs bicsp's are introduced and studied in both ech fuzzy soft bi-closure space and their induced fuzzy soft bitopological spaces. It is shown that hereditary property is satisfied for , with respect to ech fuzzy soft bi-closure space but for other mentioned types of separations axioms, hereditary property satisfies for closed subspaces of ech fuzzy soft bi-closure space.
In this article, the partially ordered relation is constructed in geodesic spaces by betweeness property, A monotone sequence is generated in the domain of monotone inward mapping, a monotone inward contraction mapping is a monotone Caristi inward mapping is proved, the general fixed points for such mapping is discussed and A mutlivalued version of these results is also introduced.
In this article, we developed a new loss function, as the simplification of linear exponential loss function (LINEX) by weighting LINEX function. We derive a scale parameter, reliability and the hazard functions in accordance with upper record values of the Lomax distribution (LD). To study a small sample behavior performance of the proposed loss function using a Monte Carlo simulation, we make a comparison among maximum likelihood estimator, Bayesian estimator by means of LINEX loss function and Bayesian estimator using square error loss (SE) function. The consequences have shown that a modified method is the finest for valuing a scale parameter, reliability and hazard functions.
In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func
In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha
... Show More