Preferred Language
Articles
/
_BYxVYcBVTCNdQwCykVK
Finite Element Modeling Of Saint-Venant Equations For Shatt-Al Hilla
...Show More Authors

Shatt Al-Hilla was considered one of the important branches of Euphrates River that supplies irrigation water to millions of dunams of planted areas. It is important to control the velocity and water level along the river to maintain the required level for easily diverting water to the branches located along the river. So, in this research, a numerical model was developed to simulate the gradually varied unsteady flow in Shatt AL-Hilla. The present study aims to solve the continuity and momentum (Saint-Venant) equations numerically to predict the hydraulic characteristics in the river using Galerkin finite element method. A computer program was designed and built using the programming language FORTRAN-77. Fifty kilometers was considered starting from downstream of Hindiyah Barrage towards Hilla City. The gathered field measurements along different periods were used for the purpose of calibration and verification of the model. The results show that the suitable Manning roughness was 0.023. A comparison with field observations was conducted to identify the validity of the numerical solution of the flow equations. The obtained results indicate the feasibility of the numerical techniques using a weighting factor of 0.667 and a time increment of 6 hr. High accuracy and good agreement were achieved, and minimum Root Mean Square Error (RMSE) of 0.029 was gained for the obtained results compared with the corresponding field observations.

Crossref
View Publication
Publication Date
Tue Sep 07 2021
Journal Name
Journal Of Petroleum Exploration And Production Technology
Wellbore instability management using geomechanical modeling and wellbore stability analysis for Zubair shale formation in Southern Iraq
...Show More Authors
Abstract<p>Wellbore instability problems cause nonproductive time, especially during drilling operations in the shale formations. These problems include stuck pipe, caving, lost circulation, and the tight hole, requiring more time to treat and therefore additional costs. The extensive hole collapse problem is considered one of the main challenges experienced when drilling in the Zubair shale formation. In turn, it is caused by nonproductive time and increasing well drilling expenditure. In this study, geomechanical modeling was used to determine a suitable mud weight window to overpass these problems and improve drilling performance for well development. Three failure criteria, including Mohr–Coulomb, modifie</p> ... Show More
View Publication
Scopus (34)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Modeling Dynamic Background based on Linear Equation
...Show More Authors

     Detection moving car in front view is difficult operation because of the dynamic background due to the movement of moving car and the complex environment that surround the car, to solve that, this paper proposed new method based on linear equation to determine the region of interest by building more effective background model to deal with dynamic background scenes. This method exploited the permitted region between cars according to traffic law to determine the region (road) that in front the moving car which the moving cars move on. The experimental results show that the proposed method can define the region that represents the lane in front of moving car successfully with precision over 94%and detection rate 86

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Feb 14 2020
Journal Name
Journal Of Mechanical Engineering Research And Developments
Noise effects in skill discretion and modeling
...Show More Authors

Diesel generators is widely used in Iraq for the purpose of maintaining electric power demand. Large number of operators engaged in this work encounters high level of noise generated by back pack type diesel generators used for this purpose. High level of noise exposure gives different kinds of ill effect on human operators. Exact nature of deteriorated work performance is not known., in present research , quastionaire was adsministered 86 repondents in Baghdad city were exposured to wide range of noise level (80-110) dB(A) with different ages and they have different skill discretion levels. Noise levels A-weigthed decibles dB(A) were measured over 8 weeks two times aday during the 2019 summer using a sound level meter.For predicting the wo

... Show More
Publication Date
Tue Jul 07 2020
Journal Name
Journal Of Mechanical Engineering Research & Developments
NOISE EFFECTS IN SKILL DISCRETION AND MODELING
...Show More Authors

Diesel generators is widely used in Iraq for the purpose of maintaining electric power demand. Large number of operators engaged in this work encounters high level of noise generated by back pack type diesel generators used for this purpose. High level of noise exposure gives different kinds of ill effect on human operators. Exact nature of deteriorated work performance is not known., in present research , quastionaire was adsministered 86 repondents in Baghdad city were exposured to wide range of noise level (80-110) dB(A) with different ages and they have different skill discretion levels. Noise levels A-weigthed decibles dB(A) were measured over 8 weeks two times aday during the 2019 summer using a sound level meter.For predicting the wo

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
FILTRATION MODELING USING ARTIFICIAL NEURAL NETWORK (ANN)
...Show More Authors

In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 26 2011
Journal Name
Journal Of Intelligent Material Systems And Structures
Design and modeling magnetorheological directional control valve
...Show More Authors

Directional control valves are designed to control direction of flow, while actuators maintain required speeds and precise positions. Magnetorheological (MR) fluid is a controllable fluid. Utilizing the MR fluid properties, direct interface between magnetic fields and fluid power is possible, without the need for mechanical moving parts like spools. This study proposes a design of a four-way three-position MR directional control valve, presents a method of building, and explains the working principle of the valve. An analysis of the design and finite elements using finite element method of magnetism (FEMM) software was performed on each valve. The magnetic circuit of the MR valve was analyzed and the performance was simulated. The

... Show More
View Publication
Scopus (31)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Sun Sep 29 2019
Journal Name
Iraqi Journal Of Science
Dependent Element and Free Actions of Centralizer and Reverse Centralizer on Prime and Semiprime Semirings
...Show More Authors

     This paper develops the work of Mary Florence et.al. on centralizer of semiprime semirings and presents reverse centralizer of semirings with several propositions and lemmas. Also introduces the notion of dependent element and free actions on semirings with some results of free action of centralizer and reverse centralizer on semiprime semirings and some another mappings.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Tue May 06 2025
Journal Name
Aip Conference Proceedings
Enhance the performance of the wind turbine blade based on the blade element momentum theory
...Show More Authors

In order to improve the effectiveness, increase the life cycle, and avoid the blade structural failure of wind turbines, the blades need to be perfectly designed. Knowing the flow angle and the geometric characteristics of the blade is necessary to calculate the values of the induction factors (axial and tangential), which are the basis of the Blade Element Momentum theory (BEM). The aforementioned equations form an implicit and nonlinear system. Consequently, a straightforward iterative solution process can be used to solve this problem. A theoretical study of the aerodynamic performance of a horizontal-axis wind turbine blade was introduced using the BEM. The main objective of the current work is to examine the wind turbine blade’s perf

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Engineering
Mathematical Modeling of Compaction Curve Using Normal Distribution Functions
...Show More Authors

Compaction curves are widely used in civil engineering especially for road constructions, embankments, etc. Obtaining the precise amount of Optimum Moisture Content (OMC) that gives the Maximum Dry Unit weight gdmax. is very important, where the desired soil strength can be achieved in addition to economic aspects.

In this paper, three peak functions were used to obtain the OMC and gdmax. through curve fitting for the values obtained from Standard Proctor Test. Another surface fitting was also used to model the Ohio’s compaction curves that represent the very large variation of compacted soil types.

The results showed very good correlation between the values obtained from some publ

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 30 2021
Journal Name
Scientific Review Engineering And Environmental Sciences
Mesoscale modeling of fracture in cement and asphalt concrete
...Show More Authors

In this paper, mesoscale modeling is performed to simulate and understand fracture behavior of two concrete composites: cement and asphalt concrete using disk-shaped compact tension (DCT) tests. Mesoscale models are used as alternative to macroscale models to obtain better realistic behavior of composite and heterogeneous materials such as cement and asphalt concrete. In mesoscale models, aggregate and matrix are represented as distinct materials and each material has its characteristic properties. Disk-shaped compact tension test is used to obtain tensile strength and fracture energy of materials. This test can be used as a better alternative to other tests such as three points bending tests because it is more convenient for both field and

... Show More
Scopus (1)
Scopus Crossref