Shatt Al-Hilla was considered one of the important branches of Euphrates River that supplies irrigation water to millions of dunams of planted areas. It is important to control the velocity and water level along the river to maintain the required level for easily diverting water to the branches located along the river. So, in this research, a numerical model was developed to simulate the gradually varied unsteady flow in Shatt AL-Hilla. The present study aims to solve the continuity and momentum (Saint-Venant) equations numerically to predict the hydraulic characteristics in the river using Galerkin finite element method. A computer program was designed and built using the programming language FORTRAN-77. Fifty kilometers was considered starting from downstream of Hindiyah Barrage towards Hilla City. The gathered field measurements along different periods were used for the purpose of calibration and verification of the model. The results show that the suitable Manning roughness was 0.023. A comparison with field observations was conducted to identify the validity of the numerical solution of the flow equations. The obtained results indicate the feasibility of the numerical techniques using a weighting factor of 0.667 and a time increment of 6 hr. High accuracy and good agreement were achieved, and minimum Root Mean Square Error (RMSE) of 0.029 was gained for the obtained results compared with the corresponding field observations.
Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show MoreThis paper is concerned with combining two different transforms to present a new joint transform FHET and its inverse transform IFHET. Also, the most important property of FHET was concluded and proved, which is called the finite Hankel – Elzaki transforms of the Bessel differential operator property, this property was discussed for two different boundary conditions, Dirichlet and Robin. Where the importance of this property is shown by solving axisymmetric partial differential equations and transitioning to an algebraic equation directly. Also, the joint Finite Hankel-Elzaki transform method was applied in solving a mathematical-physical problem, which is the Hotdog Problem. A steady state which does not depend on time was discussed f
... Show MoreHydro cracking of heavy oil is used in refinery to produce invaluable products. In this research, a model of hydro cracking reactor has been used to study the behavior of heavy oil in hydro cracking under the conditions recommended by literature in terms lumping of feed and products. The lumping scheme is based on five lumps include: heavy oil, vacuum oil, distillates, naphtha and gases. The first order kinetics was assumed for the conversion in the model and the system is modeled as an isothermal tubular reactor. MATLAB 6.1 was used to solve the model for a five lump scheme for different values of feed velocity, and temperature.
This research will cover different aspects of estimating process of construction work in a desert area. The inherent difficulties which accompany the cost estimating of the construction works in desert environment in a developing country, will stem from the limited information available, resources scarcity, low level of skilled workers, the prevailing severe weather conditions and many others, which definitely don't provide a fair, reliable and accurate estimation. This study tries to present unit price to estimate the cost in preliminary phase of a project. Estimations are supported by developing mathematical equations based on the historical data of maintenance, new construction of managerial and school projects.
... Show MoreThis research investigates manganese (Mn) extraction from Electric Arc Furnace Steel Slag (EAFS) by using the Liquid-liquid extraction (LLE) method. The chemical analysis was done on the slag using X-ray fluorescence, X-ray diffraction, and atomic absorption spectroscopy. This work consisted of two parts: the first was an extensive study of the effect of variables that can affect the leaching process rate for Mn element from slag (reaction time, nitric acid concentration, solid to liquid ratio, and stirring speed), and the second part evaluates the extraction of Mn element from leached solution. The results showed the possibility of leaching 83.5 % of Mn element from the slag at a temperature of 25°C, nitric acid co
... Show MoreThe aim of this study is to propose reliable equations to estimate the in-situ concrete compressive strength from the non-destructive test. Three equations were proposed: the first equation considers the number of rebound hummer only, the second equation consider the ultrasonic pulse velocity only, and the third equation combines the number of rebound hummer and the ultrasonic pulse velocity. The proposed equations were derived from non-linear regression analysis and they were calibrated with the test results of 372 concrete specimens compiled from the literature. The performance of the proposed equations was tested by comparing their strength estimations with those of related existing equations from literature. Comparis
... Show MoreIn this paper, we study the growth of solutions of the second order linear complex differential equations insuring that any nontrivial solutions are of infinite order. It is assumed that the coefficients satisfy the extremal condition for Yang’s inequality and the extremal condition for Denjoy’s conjecture. The other condition is that one of the coefficients itself is a solution of the differential equation .