There has been a great deal of research into the considerable challenge of managing of traffic at road junctions; its application to vehicular ad hoc network (VANET) has proved to be of great interest in the developed world. Dynamic topology is one of the vital challenges facing VANET; as a result, routing of packets to their destination successfully and efficiently is a non-simplistic undertaking. This paper presents a MDORA, an efficient and uncomplicated algorithm enabling intelligent wireless vehicular communications. MDORA is a robust routing algorithm that facilitates reliable routing through communication between vehicles. As a position-based routing technique, the MDORA algorithm, vehicles' precise locations are used to establish the optimal route by which the vehicles may reach their desired destinations. By determining the route containing the maximum distance with the minimum number of hops, MDORA minimizes the control overhead. The final aspect of the paper is to compare gains of MDORA with those of existing protocols such as AODV, GPSR-L and HLAR in terms of throughput, packet delivery ratio and average delay. From the analysis, it will be evident that the performance of MDORA is far better than the other protocols.
Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreBiometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show MoreThe art of preventing the detection of hidden information messages is the way that steganography work. Several algorithms have been proposed for steganographic techniques. A major portion of these algorithms is specified for image steganography because the image has a high level of redundancy. This paper proposed an image steganography technique using a dynamic threshold produced by the discrete cosine coefficient. After dividing the green and blue channel of the cover image into 1*3-pixel blocks, check if any bits of green channel block less or equal to threshold then start to store the secret bits in blue channel block, and to increase the security not all bits in the chosen block used to store the secret bits. Firstly, store in the cente
... Show MoreAbstract Aim: Autism is a neurodevelopmental disorder which affects communication and social interaction of children. It is a heterogeneous disease with various clinical presentations. Some genes are involved in its pathogenesis. It has been suggested that environmental exposure to lead can increase the risk of autism. The aim of our study was to compare blood lead levels among autistic and non-autistic children. Material and Method: This retrospective study included 107 children (60 with autism and 47 without autism) referred from the different Iraqi provinces, in the years 2015, 2016 and 2017, to the poisoning consultation center in Baghdad. Data collection including age, gender, residence, referral source, family history and blood lead l
... Show MoreBackground: Diabetes mellitus and osteoporosis are two common medical disorders that are becoming more common as the population ages. T2DM patients have a higher fracture hazard, having a high BMD, which is primarily due to the raise hazard of falling. Macrophage colony-stimulating factor (M-CSF) is one of the hematopoietic growth factor family, and It plays an important function in fracture repair by attracting stem cells to the fracture site and influencing the production of hard calluses by promoting osteoclast genesis.Aims of study: The purpose of this research was to assess the blood level of macrophage colony-stimulating factor in Iraqi osteoporotic patients with and without type 2 diabetes. in addition, that M-CSF may be a predictiv
... Show MoreThis study investigates the influence of asymmetric involute teeth profiles for helical gears on the bending stress. Theoretically, bending stress has been estimated in spur involute gears which have symmetric teeth profile by based on the Lewis, 1892 equation. Later, this equation is developed by, Abdullah, 2012. to determine the effect of an asymmetric tooth profile for the spur gear on the bending stress. And then these equations are applied with stress concentration factor once for symmetric and once other for asymmetric teeth profile. In this paper, the bending stresses for various types of helical gear with various types of asymmetric teeth profile are calculated numerically for defined the stress concentration fac
... Show MoreWorldwide, hundreds of millions of people have been infected with COVID-19 since December 2019; however, about 20% or less developed severe symptoms. The main aim of the current study was to assess the relationship between the severity of Covid-19 and different clinical and laboratory parameters. A total number of 466 Arabs have willingly joined this prospective cohort. Out of the total number, 297 subjects (63.7%) had negative COVID-19 tests, and thus, they were recruited as controls, while 169 subjects (36.3%) who tested positive for COVID-19 were enrolled as cases. Out of the total number of COVID-19 patients, 127 (75.15%) presented with mild symptoms, and 42 (24.85%) had severe symptoms. The age range for the partic
... Show More