CuInSe2 (CIS)thin films have been prepared by use vacuum thermal evaporation technique, of 750 nm thickness, with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant)by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can made to control it is wide applications as an optoelectronic devices and photovoltaic applications.
Photovoltaic devices (PVs) were fabricated by spray-coating an ink of copper indium diselenide CuInSeR 2 R(CIS) nanocrystals as the light-absorbing layer. Without high-temperature post-deposition annealing, PVs were made on glass substrates with power conversion efficiencies of up to 1.5% and 0.9%, for Au and Mo coated respectively, under AM 1.5 illumination. UV–Vis spectrophotometer in the wavelength range 350–1500 nm. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis it is evident that CuInSeR 2 R have the chalcopyrite structure as the major phase and no secondary phase with a preferred orientation along (112) direction and The atomic ratio of Cu : In : Se in the nanocrystals is nearly 1 : 1 : 2.
Thin films Tin sulfide SnS pure and doped with different ratios of Cu (X=0, 0.01, 0.03 and 0.05) were prepared using thermal evaporation with a vacuum of 4*10-6mbar on two types of substrates n-type Si and glass with (500) nm thickness for solar cell application. X-ray diffraction and AFM analysis were carried out to explain the influence of Cu ratio dopant on structural and morphological properties respectively. SnS phase appeared forming orthorhombic structure with preferred orientation (111), increase the crystallinity degree and surface roughness with increase Cu ratio. UV/Visible measurement revealed the decrease in energy gap from 1.9eV for pure SnS to 1.5 for SnS: Cu (0.05) making these samples suitable f
... Show MoreIn this work, carbon-doped copper oxide thin films were deposited by the reactive DC sputtering method for use as selective absorbents. The properties of the DC discharge plasma were studied, using the emission spectrum, in the presence of pure argon and by mixing it with oxygen once and carbon dioxide again to know the effect of adding these gases on the properties of the resulting plasma used in the deposition of films. The structural properties of the deposited thin films prepared with different flow ratio of carbon dioxide gas were studied using x-ray diffraction. To examine the selective absorber coatings, the reflectance within the UV-Vis spectrum was measured to calculate the percentage of energy absorbed by solar radia
... Show More
Poly ethylene oxide PEO / Poly vinyl alcohol PVA blends were prepared by cast method at different ratios of (25%PEO/75%PVA, 30%PEO/70%PVA, 35%PEO/65%PVA, 40%PEO/60%PVA, and 50%PEO/505PVA). Samples miscibility ,and thermal stability were studied by using differential scanning calorimetry(DSC),and thermo gravimetric analysis (TGA) analysis. The results proved that there was one glass transition temperature (Tg=160°C) at 25%PEO\PVA ratio
)that was attributed to its miscibility. This miscibility associated with (Hydrogen bonds) between (Hydroxyl group) in PVA, and PEO, whereas there were two glass transition temperature for the blends ratio more than 30%PEO,that was due its immisc
The aim of this research is to study the influence of additives on the properties of soap greases, such as lithium, calcium, sodium, lithium-calcium grease, by adding varies additives, such as graphite, molybdenum disulfide, carbon black, corrosion inhibitor, and extreme pressure.
These additives have been added to grease to obtain the best percentages that improve the properties of grease such as load carrying, wear resistance, corrosion resistance, drop point, and penetration.
The results showed the best weight percentages to all types of grease which give good properties are 1.5% extreme pressure additive, 3% graphite, 1% molybdenum disulfide, 2.5% carbon black.
The other hand, the best weight percentage for corrosion inhibit
Beryllium Zinc Oxide (BexZn1-xO) ternary nano thin films were deposited using the pulsed laser deposition (PLD) technique under a vacuum condition of 10-3 torr at room temperature on glass substrates with different films thicknesses, (300, 600 and 900 nm). UV-Vis spectra study found the optical band gap for Be0.2Zn0.8O to be (3.42, 3.51 and 3.65 eV) for the (300, 600 and 900nm) film thicknesses, respectively which is larger than the value of zinc oxide ZnO (3.36eV) and smaller than that of beryllium oxide BeO (10.6eV). While the X-ray diffraction (XRD) pattern analysis of ZnO, BeO and Be 0.2 Zn 0.8 O powder and nano-thin films indicated a hexa
... Show MoreThe effect of thickness variation on some physical properties of hematite α-Fe2O3 thin films was investigated. An Fe2O3 bulk in the form of pellet was prepared by cold pressing of Fe2O3 powder with subsequent sintering at 800 . Thin films with various thicknesses were obtained on glass substrates by pulsed laser deposition technique. The films properties were characterized by XRD, and FT-IR. The deposited iron oxide thin films showed a single hematite phase with polycrystalline rhombohedral crystal structure .The thickness of films were estimated by using spectrometer to be (185-232) nm. Using Debye Scherrerś formula, the average grain size for the samples was found to be (18-32) nm. Atomic force microscopy indicated that the films had
... Show More