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Dual Metal All Around Gate FinFET-3D Simulation 
 
 

H. Zolfaghari, S. E. Hosseini 

 
 
Abstract – In this paper, we present a dual metal all around gate structure for FinFET. This 
structure suppresses the short channel effects (SCEs) excellently due to increasing gate control on 
the channel and exhibit  near ideal sub-threshold performance, evident by the very low drain- 
induced barrier- lowering (DIBL) and the inverse of the sub-threshold slope which is close to the 
theoretical limit (SS < 64 mV/dec). Moreover, the measured leakage currents are low and proper 
current saturation that transfers into large output resistances and makes these devices suitable for 
high-gain applications. Copyright © 2011 Praise Worthy Prize S.r.l. - All rights reserved. 
 
Keywords: Dual Metal, Three Metal, FinFET, DIBL, Subthreshold Slope, SCEs 
 

 

I. Introduction 
FinFET is an attractive candidate to either succeed 

bulk CMOS technology at the end of scaling or to be 
integrated with bulk CMOS in various applications [1]. 
This structure is from multi-gate’s family (MuGFET) 
devices, so that increasing gate control on channel [2] 
and, charge-sharing effects from source/drain region in 
the channel are decreased which results in suppressing 
short channel effects (SCEs) [3]. Fabrication of FinFETs 
is compatible with that of conventional CMOS [4]. 

Fully depleted channel FinFET solve threshold 
voltage (Vth) swing due to dopants density fluctuation 
and distribution, sub-threshold slope improved, thus 
exhibit low off-state (Ioff) current, and cause on-state (Ion)  
current increased as well as enhances the device output 
resistance resulting in trans-conductance enhancement 
because of low channel dopants density [5],[6],[7]. 

While Vth tuning by implantation is difficult for 
narrow fin devices, work function tuning with metal 
gates is the preferred solution for FinFET devices [8].  

This metal gates stack can be achieved by full 
silicidation of the poly gate [9], the combination of a 
metal (molybdenum) gate and a nitrogen implantation 
technique [10], or by metal deposition. In this paper we 
investigate dual metal and three metal FinFET 
performance by numerical 3-D simulation and compare 
dual metal with single-metal and three-metal FinFET 
structure.  

II. Device Structure 
A Schematic cross-sectional perspective of a fully 

depleted multi metal FinFET is illustrated in Figs. 1. 
In this structure, the gate covers all around the Fin 

channel. Gate length is 30nm, compatible with future 
technology and adapted to CMOS scaling roadmap. 

Fin width and height are 15 nm and gate oxide 
thickness is 1 nm. Channel doping concentration is 
1×1016 /cm3 to avoid dopant fluctuations and decrease 
sub-threshold swing. 
 

 
(a) 

 
(b) 

 
Figs. 1. (a) Schematic cross-sectional (b) 3D perspective of a fully 

depleted dual metal FinFET(M1and M2 are  metal with φM1 and φM2 ) 
 

For the single metal (SM) transistor the gate work 
function is assumed φM1=4.95 eV. For the dual metal 
(DM) case, the gate length is divided into L1 and L2 each 
of length 15 nm (L1=L2=Lg/2) with work functions 
φM1=4.95 eV and φM2=4.5 eV, respectively, and finally 
for the three metal (TM) transistor, the gate length is 
divided into L1, L2 and i each of length 10nm (L1= L2= 
L3=Lg/3) with work functions φM1=4.95eV, φM2=4.8eV 
and φM3=4.5eV, respectively (with higher work function 
metal close to source). Fig. 2 shows the critical 
dimension and doping conditions used in the simulation. 
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Fig. 2. Critical dimensions and implant conditions of FinFET structure used in the simulations 
 

III. Simulation Results 
In this section, simulation results are present for single 

metal (SM), dual metal (DM) and three metal (TM) gate 
FinFETs. Simulations are performed using the numerical 
simulator ATLAS Silvaco. The surface potential, 
electrical field, drain-induced barrier-lowering (DIBL), 
sub-threshold slope, threshold voltage, breakdown 
voltage and trans-conductance are investigated in this 
paper . 

III.1. Surface Potential and Electrical Field 

Fig. 3 shows the surface potential along the channel at 
Vds=0.5 V and Vds=1 V. As is shown in Fig. 3, the 
surface potential for SM FinFET is lower compared to 
the DM and the TM cases for all drain voltages. The 
surface potential of DM FinFET has a step near the 
middle of the channel which cause reduced short channel 
effects [11]. The surface potential of TM FinFET is very 
close to that of DM FinFET [12], with a small additional 
step in the potential due to small difference between φM1 
and φM2. For the DM FinFET the potential step is larger 
due to larger difference between work functions of the 
two metals. This causes more electrical field at Lg/2 and 
increases the carrier’s energy moving toward the drain. 
Figure 4 shows the electrical field along the channel for 
the three transistors. The electrical field is increased with 
increasing the drain voltage (Vds=0.5 V, to Vd=1 V). For 
SM FinFET, the electrical field at drain side is very 
large, but for DM and TM FinFETs the peak electrical 
field is decreased considerably. DM FinFET has smallest 
peak electric field, which causes lower hot electron 
effects such as impact ionization and gate tunneling 
current. Moreover, for the DM and TM transistor, the 
electrical field is more uniform compared with SM finfet.  

III.2. Output Characteristics 

The transfer and output characteristics of the SM, DM 
and TM FinFETs are shown in Fig. 5 and Fig. 6 

respectively, and extracted device parameters are 
summarized in Table I. As is evident from Fig. 5, Ion of 
SM FinFET is less than that of TM and DM FinFETs, 
but Ion of DM FinFET is close to that of TM case. 
 

 
 

Fig. 3. Surface potential along the channel for TM FinFET φM1=4.95 
eV, φM2=4.8 eV and φM3 =4.5 eV, DM FinFET φM1=4.95 eV and =4.5 

eV, and SM FinFET φM=4.95 eV 
 

 
 

Fig. 4. Electrical field for SM, DM and TM FinFETs 
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Sub-threshold slopes (SS) are 61, 61.8 and 62 mV/dec 
for SM, DM and TM FinFETs respectively. For all of 
them DIBL is less than 2 mV/V which is excellent. 
Breakdown voltage (VBR) of SM, DM and TM FinFETs 
are 1.15, 1.61 and 1.62 V respectively. The saturation 
current in DM FinFET is more than that of TM and SM 
ones. 

 
TABLE I 

DEVICE PARAMETERS FOR SM, DM AND TM FINFETS 
Parameters Sm finfet Dm finfet Tm finfet 

Vth (V) 
Vds=1(V) 0.6911 0.6639 0.6588 

DIBL(mV/V) 4.6 1 1.4 
SS(mV/dec) 60.4 63 64.2 

VBr (V) 1.15 1.61 1.62 
Gm(uA/V) 10.9 10.28 10.28 

Ion(uA) 3.33 3.61 3.45 
Ioff (A)  

(vgs=0V,Vd=1V ) <6×10-18 <4×10-17 <6×10-17

 
 

 
 

Fig. 5. Id –Vgs curve for the three FinFETs 
 

 
 

Fig. 6. Id –Vds curve for SM, DM and TM FinFETs at Vgs=1 V 
 

Fig. 7 shows the output characteristic with gate-source 
voltage swept from 0.7V to 0.9V with 0.1 steps. 

Fig. 8. shows the trans-conductance (gm) for the three 
structures. The maximum gm in SM, DM and TM 
FinFETs are 10.9, 10.28 and 10.28 uA/V respectively. 

 

 
 

Fig. 7. Id –Vds curve for SM, DM and TM FinFETs for Vgs =0.7,...,1 
V with 0.1 steps 

 

 
 

Fig. 8. Trans-conductance of SM, DM and TM FinFETs 
 

For more analyses, we investigate doping 
concentration effects of N region, and gate-channel 
overlap effects on the device parameters. Increasing the 
doping density of N region from 1017/cm3 to 5×1018/cm3, 
and decreasing doping density of N+ region from 
1020/cm3 to 5×1018/cm3 at the same time, increase the 
DIBL and sub-threshold slope, decrease the breakdown 
voltage and, as is seen from Fig. 9, the gm curve has a 
single hump, which indicates that premature corner 
inversion has been eliminated. 

According to [13]-[14], the trans-conductance is 
increased as well. Table II summarizes the results. 

We simulate the gate overlap with adding a 3 nm n-
type region with doping concentration of 1×1017 /cm3 in 
the channel at the drain and source sides as is shown in 
Fig. 10. Appending this region to the channel, results in 
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excellent device parameters for the three structures, 
which are summarized in Table III. 

 
TABLE II 

DEVICE PARAMETERS FOR SM, DM AND TM FINFETS 

Parameters Sm finfet Dm finfet Tm finfet 
Vth (V) 

Vds=1(V) 0.6665 0.5915 0.5810 

DIBL(mV/V) 11 6.2 9.8 
SS(mV/dec) 60.4 64.4 64.4 

VBr (V) 1.03 1.47 1.52 
Gm(uA/V) 23.49 22.33 22.47 

Ion(uA) 7.82 8.65 9.02 
Ioff (A) 

(vgs=0.05V, 
Vd=1V ) 

<3×10-16 <2×10-14 <2×10-14 

 

 
TABLE III 

SIMULATION RESULTS OF GATE OVERLAP FOR SM, DM 
AND TM FINFETS 

Parameters Sm finfet Dm finfet Tm finfet 
Vth (V) 

Vds=1(V) 0.6909 0.6625 0.6578 

DIBL(mV/V) 4.6 1.2 1.4 
SS(mV/dec) 60.4 62.8 63.2 

VBr (V) 1.151 1.61 1.62 
Gm(uA/V) 10.97 10.37 10.97 

Ion(uA) 3.33 3.61 3.45 
Ioff (A) 

(vgs=0.05V,Vd=1V) <2×10-16 <2.5×10-16 <3.5×10-16 
 

 

 
 

Fig. 9. Trans-conductance curve for SM, DM and TM FinFETs with 
increased N region doping 

 

 
 

Fig. 10. Gate overlap length in the channel 
 

III.3. Three Metal (TM) FinFET  

In this section, we focus on TM FinFET and 
investigate the effect of variation of φM2 on the 
characteristics of this structure. To do this, we change 
φM2 from 4.55 eV that is close to φM3, to 4.9 eV which is 
close to φM1 in steps 0.05 eV. 

Fig. 11 shows the surface potential along the channel 
for Vgs=1 V and Vds=1 V. As can be seen, decreasing 
φM2 increases the surface potential in the channel near the 
drain end, hence the major portion of the channel is 
shielded from the drain voltage variations. The electrical 
field along the channel for Vgs=1 V and Vds=1 V is 
shown in Fig. 12. 

It is clearly visible that when the work functions φM2 
is close to φM3 or φM1, the electrical field variation along 
the channel is large. 

With φM2 =4.7 eV the electrical field is more or less 
uniform along the channel. When φM2 is close to φM1 the 
maximum electrical field at the drain side is reduced, 
which causes reduced hot electron effects. 

Up to φM2 =4.7 eV the maximum electrical field at the 
drain side is not increased significantly, therefore, it 
seems that φM2 =4.7 eV is the best value since causes 
both reduce hot electron effects and rather uniform 
electric field along the channel. 

Fig. 13 shows the gm versus φM2. This indicates that 
with increasing φM2, up to 4.8 eV, gm decreases then 
increase again. 

Figs. 14 (a), (b) and (c) show the DIBL, the sub-
threshold slope and the breakdown voltage vs φM2 for 
TM FinFET respectively. 

These figures indicate that upon increasing φM2 up to 
4.8 eV, the DIBL, the sub-threshold slope and the 
breakdown voltage have regular variations, above 
φM2=4.8 eV these characteristics degrade. 

According to Fig. 13, it seems that optimum value for 
φM2 is 4.8 eV. 
 

 
 

Fig. 11. Surface potential along the channel for TM FINFET  
with ΦM2=4.55,…,4.9 eV 
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Fig. 12. Electrical field for TM FinFET with φM2=4.55,…,4.9 eV 
 

 
 

Fig. 13. Trans-conductance curve for TM FinFET 
with φM2=4.55,…,4.9 eV 

 

      
                                                             (a)                                                                                                                        (b) 
 

 
(c) 

 
Figs. 14. (a) DIBL; (b) subthreshold slope; (c) breakdown voltage Vs work function for TM FinFET 
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IV. Conclusion 
The fully depleted all around gate FinFET structures 

with single, dual and triple metal gates are investigated in 
this paper. It is shown that DM and TM FinFETs have 
improved short channel effects. Moreover, doping 
concentration effects at the source and the drain 
extensions on the device parameters are investigated. 
Simulations show that DM and TM transistors exhibit 
lower DIBL, excellent sub-threshold slope, higher 
breakdown voltage and on-state current. Also, decreasing 
electric field at the drain side results in lower hot carrier 
effects. 
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The Improvement (G'/G) - Expansion Method to Construct 
the Exact Solutions of Nonlinear Differential Difference Equations 

 
 

Khaled A. Gepreel 
 
 
Abstract – In this article, we construct  the traveling wave solutions involving parameters of the 
nonlinear differential difference equations via the lattice equation, the relativistic Toda lattice 
equations and the (1+1) – dimensional Toda equation  in terms of the hyperbolic functions and 
trigonometric functions by using the improvement ( G / G′ )- expansion method, where G  satisfies 
a discrete second order linear ordinary differential equation. When the parameters are taken 
special values, the solitary wave are derived from the traveling waves. Copyright © 2011 Praise 
Worthy Prize S.r.l. - All rights reserved. 
 
Keywords: The Improvement ( G / G′ ) - Expansion Method, Traveling Wave Solutions, The 

Lattice Equation, The Relativistic Toda Lattice Equations , The (1+1) – Dimensional 
Toda Equation 

 
 

I. Introduction 
It is well known that the investigation of differential-

difference equations (DDEs) which describe many 
important  phenomena and dynamical processes in many 
different fields, such as particle vibrations in lattices, 
currents in electrical networks, pulses in biological 
chains and so on, has played an important role in the 
study of modern physics. 

Unlike difference equations which are fully 
discredited, DDEs are semi- discredited with some (or 
all) of their special variables discredited while time is 
usually kept continuous. DDEs also play an important 
role in numerical simulations of nonlinear partial 
differential equations (NLPDEs), queuing problems, and 
discretization  in solid state and quantum physics. 

Since the work of Fermi, Pasta, and Ulam in the 1960s 
[1], DDEs have been the focus of many nonlinear 
studies. On the other hand, many effective methods for 
obtaining the exact solutions of NPDEs have presented  
such as the inverse scattering method [2], Hirota’s 
bilinear method [3], Backlund transformation [4], [5], 
Painlevé expansion [6], sine–cosine method [7], 
homogenous balance method [8], homotopy perturbation 
method [9]-[12], variation method [13], [14], Adomian 
decomposition method [15],[16], tanh - function method 
[17]-[19], Jacobi elliptic function expansion method 
[20]-[23], F-expansion method [24]-[26] and exp-
function method [27]-[29]. 

Wang et al. [30] proposed a new method called the 
( G / G′ ) expansion method to look for the traveling 
wave solutions for nonlinear partial differential equations 
(NPDEs). By using the ( G / G′ ) expansion method, 
Wang etal [30] and Zayed et al. [31], [32] has 
successfully obtained more traveling  wave  solutions  for 

some important NPDEs. Recently Zhang et al. [33] had 
developed the ( G / G′ ) expansion method for solving the 
NDDEs. 

In this paper we use the improvement ( G / G′ ) 
expansion method to find the traveling wave solutions 
for the lattice equation, the relativistic Toda lattice 
equations and the (1+1) – dimensional Toda equation in 
terms of hyperbolic functions, trigonometric functions. 

II. Description of the Improvement (G'/G) 
Expansion Method for NDDEs 

In this section, we would like to outline the algorithm 
for using the improved ( G / G′ ) expansion method to 
solve NDDEs. 

Consider a given system of M  polynomial NDDEs: 
 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1 1

1

0
k

k k

n p n p n p

r r
n p n p n p

u X ,...,u X ,u X ,...,

u X ,...,u X ,...,u X

+ + +

+ + +

′⎛ ⎞
⎜ ⎟∆ =
⎜ ⎟′⎝ ⎠

 (1) 

 
where the dependent variable u  has M  components iu  , 
the continuous variable x  has N  components jx  , the 

discrete variable n  has Q  components in , the k  shift 

vectors Q
sp Z∈  and ( )ru  denotes the collection of 

mixed derivative terms of order r. 
The main steps of the algorithm for using the 

improved ( G / G′ )- expansion method to solve NLDDEs 
are outlined as follows: 

 
Step 1. When we seek traveling wave solutions of Eq. 

(1), the first step is to introduce the wave transformation: 
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( ) ( )

0
1 1

1 2

s sn p n p n

Q Q

n i i j j
i j

u X U

d n c x

s , ,...,k

ξ

ξ ξ

+ +

= =

=

= + +

=

∑ ∑  (2) 

 
where the coefficients id , jc  and the phase 0ξ  are 
constants. The transformations (2) lead to write Eq. (1) 
into the following form: 
 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1 1

1

0
k

k k

n p n n p n n p n

r r
n p n n nn p n p

U ,...,U , U ,...,

U ,...,U ),...,U

ξ ξ ξ

ξ ξ ξ

+ + +

+ + +

′⎛ ⎞
⎜ ⎟∆ =
⎜ ⎟′⎝ ⎠

 (3) 

 

Step 2. We suppose the following series expansion as 
a solution of Eq. (3): 

 

 ( ) ( )
( )

( )
( )0 1

i jm m
n n

n n i j
n ni j

G G
U

G G
ξ ξ

ξ α β
ξ ξ= =

′⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠
∑ ∑  (4) 

 
where iα , jβ  are constants to be determined later, 

( )nG ξ  satisfies a discrete second order linear ordinary 
differential equation: 
 
 ( ) ( ) ( ) 0n n nG G Gξ λ ξ µ ξ′′ ′+ + =  (5) 
 
where λ  and µ  are arbitrary constants. Using the 
general solutions of Eq. (5), we have: 
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2 24 4

2 2

4 4
2 24

2 4
2

n n

n n

n

n

n n

n

C sinh C cosh

,

C cosh C sinh

G
G

C sin C cos

C cos

λ µ λ µ
ξ ξ

λ µ λ λ µ
λ µ λ µ

ξ ξ

ξ
ξ

µ λ µ λ
ξ ξ

µ λ

µ λ
ξ

⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟⎜ ⎟ ⎜ ⎟+
⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎜ ⎟ − − >

⎜ ⎟⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎜ ⎟+
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠′

=

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟− +
⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠
⎛ ⎞−⎜
⎜
⎝ ⎠

2

2

2

4 0
24

2 n

,

C sin

λ µ λ
µ λ

ξ

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪ ⎛ ⎞⎪ ⎜ ⎟⎪ ⎜ ⎟⎪ ⎜ ⎟ − − >⎪ ⎜ ⎟⎛ ⎞−⎪ ⎟ ⎜ ⎟⎜ ⎟+⎪ ⎟ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎝ ⎠⎩

 (6) 

 
Further. using the following identities: 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

sinh x y sinh x cosh y cosh x sinh y ,

cosh x y cosh x cosh y sinh x sinh y

± = ±

± = ±
(7) 

 

and: 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

sin x y sin x cos y cos x sin y

cos x y cos x cos y sin x sin y

± = ±

± = ∓
 (8) 

 
 

we can prove that (see [33]): 
 

 
( )
( )

( ) ( )
( )
( )

( )

( )
( ) ( )

( )

2

22

2

2

42
2 244

2 2421
2 24

n

n
n y

n y
n

n

G
f y

GG

G
G

f y
G

ε λ µξ λ ε
ξε λ µε λ µξ λ

ξ ε λ µ ξ λ
ξε λ µ

±

±

⎛ ⎞⎛ ⎞−′⎛ ⎞⎜ ⎟⎜ ⎟+ ±⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠− ⎜ ⎟⎜ ⎟−′ ⎝ ⎠⎜ ⎟= −

⎛ ⎞⎜ ⎟− ′⎛ ⎞⎜ ⎟⎜ ⎟± +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠− ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (9) 

 
where 1ε = ±  and: 
 

 
( )

2

2

2

4
1

24

2 4
1

2

tanh y ,

f y

tan y ,

λ µ
ε

ε λ µ

µ λ
ε

⎧ ⎛ ⎞−⎪ ⎜ ⎟ =⎛ ⎞ ⎜ ⎟⎪−⎜ ⎟ ⎪ ⎝ ⎠= ⎨⎜ ⎟ ⎛ ⎞⎪⎜ ⎟ −⎜ ⎟⎝ ⎠ = −⎪
⎜ ⎟⎪ ⎝ ⎠⎩

 (10) 
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Thus the iterative relation can be written in the following form: 
 

 

( )
( ) ( )

( )
( )

( )

( )
( ) ( )

( )

( ) ( )
( )
( )

2

22

20

2

22

1

42
2 244

2 2421
2 24

2
244

2

i

n
s

nm

n n p i
i

n
s

n

n

nm

j
j

G
f

G
U

G
f

G

G
G

ε λ µξ λ ε ϕ
ξε λ µε λ µ λξ α

ε λ µ ξ λϕ
ξε λ µ

ξ λ
ξε λ µε λ µ

β

±
=

=

⎛ ⎞⎛ ⎞⎛ ⎞−′⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟+ ±⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟− ⎜ ⎟⎜ ⎟− ⎝ ⎠⎜ ⎟⎜ ⎟= − +

⎜ ⎟⎛ ⎞⎜ ⎟− ′⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟± +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠− ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

′⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠−−
+

∑

∑

( )

( )
( ) ( )

( )

2

2

2

4

2

2421
2 24

j

s

n
s

n

f

G
f

G

ε λ µ
ε ϕ

λ

ε λ µ ξ λϕ
ξε λ µ

−
⎛ ⎞⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟±⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟ −
⎜ ⎟⎛ ⎞⎜ ⎟− ′⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟± +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠− ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 (11) 

 
where 1 1 2 2s s s sQ Qp d p d ..... p dϕ = + + +  and sjp  is the 

jth component of shift vector sp . 
Step 3. Determine the degree m  of Eqs. (4) and (11) 

by balancing the highest order nonlinear term(s) and the 
highest order partial derivatives of nU  in Eq. (3).  

Step 4. Substituting Eqs. (4) and (11) given the value 
of m  determined in step 3 along with (5) into (3) and 
collecting all terms with the same order of 
( ( ) ( )n nG / Gξ ξ′ ) together, the left-hand side of (3) is 

converted into polynomials in ( ( ) ( )n nG / Gξ ξ′ ). Then 
setting each coefficient of this polynomials to zero, we 
will derive a set of algebraic equations, from which the 
constants iα , jβ , id  and jc  can be explicitly 
determined by use of Mathematica or Maple. 

Step 5. Using the results obtained in above steps, we 
can finally obtain exact solutions of Eq. (1). 

III. Applications 
In this section, we apply improvement ( G / G′ )- 

expansion method to construct the traveling wave 
solutions for some nonlinear DDEs vie the lattice 
equation, the relativistic Toda lattice equations and the 
(1+1) – dimensional Toda equation which are very 
important in the mathematical physics and have been 
paid attention by many researchers. 

III.1. Example 1. The Lattice Equation 
In this section, we study the lattice equation which 

takes the following form [33], [34], [35], [36]: 
 

 
( ) ( )( )2

1 1
n

n n n n
du t

u u u u
dt

α β γ − += + + −  (12) 

where ,α β  and γ  are nonzero constants. The equation 
contains Hybird lattice equation, mKdV lattice equation , 
modified Valterra lattice equation and Langmiuir chain 
equation: 
 
(i) (1+1) dimensional Hybird lattice equation [35]: 
 

( ) ( )( )2
1 11n

n n n n
du t

u u u u
dt

β γ − += + + −  

 
(ii) mKdV lattice equation [35]: 
 

( ) ( )( )2
1 1

n
n n n

du t
u u u

dt
α − += − −  

 
(iii) Modified Valterra equation [35]:  
 

( ) ( )2
1 1

n
n n n

du t
u u u

dt − += −  

 
(iv) Langmiuir chain equation [36]: 
 

( ) ( )1 1
n

n n n
du t

u u u
dt + −= −  

 
According to the above steps, to seek traveling wave 

solutions of Eq. (12), we construct the transformation: 
 
 ( ) 1 1 0n n n nu U , d n c tξ ξ ξ= = + +  (13) 
 
where 1d , 1c  and  0ξ  are constants. The transformation 
(13) permits us converting Eq. (12) into the following 
form: 
 
 ( ) ( )( )2

1 1 1n n n n n nc U U U U Uξ α β γ − +′ = + + −  (14) 
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where 
n

d'
dξ

= . Considering the homogeneous balance 

between the highest order derivative and the nonlinear 

term in (14), we get 1m = . Thus the solution of Eq. (14) 
has the following form: 

 

( ) ( )
( )

( )
( )0 1 1

1 10 0

n n
n n

n n

G G
U ,

G G

or

ξ ξ
ξ α α β

ξ ξ

α β

′⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠

≠ ≠

                                                      (15) 

 

( ) ( )
( )
( )

( )

( )
( ) ( )

( )

( ) ( )
( )
( )

( )

2

1
22

1 1
2

1
2

2

1
22

1

42
2 244

2 2421
2 24

42
2 244

2

n

n

n

n

n

n

n

G
f d

G
U

G
f d

G

G
f d

G

ε λ µξ λ ε
ξε λ µε λ µ λα

ε λ µ ξ λ
ξε λ µ

ε λ µξ λ ε
ξε λ µε λ µ

β

+

⎛ ⎞⎛ ⎞⎛ ⎞−′⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟− ⎜ ⎟⎜ ⎟− ⎝ ⎠⎜ ⎟⎜ ⎟= − +

⎜ ⎟⎛ ⎞⎜ ⎟− ′⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠− ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

⎛ −′⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠−−
+

( )
( ) ( )

( )

1

2

1
2

2421
2 24

n

n

G
f d

G

λ

ε λ µ ξ λ
ξε λ µ

−
⎛ ⎞⎛ ⎞⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟ −
⎜ ⎟⎛ ⎞⎜ ⎟− ′⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠− ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 (16) 

 

( ) ( )
( )
( )

( )

( )
( ) ( )

( )

( ) ( )
( )
( )

( )

2

1
22

1 1
2

1
2

2

1
22

1

42
2 244

2 2421
2 24

42
2 244

2

n

n

n

n

n

n

n

G
f d

G
U

G
f d

G

G
f d

G

ε λ µξ λ ε
ξε λ µε λ µ λα

ε λ µ ξ λ
ξε λ µ

ε λ µξ λ ε
ξε λ µε λ µ

β

−

⎛ ⎞⎛ ⎞⎛ ⎞−′⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟+ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟− ⎜ ⎟⎜ ⎟− ⎝ ⎠⎜ ⎟⎜ ⎟= − +

⎜ ⎟⎛ ⎞⎜ ⎟− ′⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟− +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠− ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

⎛ −′⎛ ⎞
+ −⎜ ⎟⎜ ⎟

⎝ ⎠−−
+

( )
( ) ( )

( )

1

2

1
2

2421
2 24

n

n

G
f d

G

λ

ε λ µ ξ λ
ξε λ µ

−
⎛ ⎞⎛ ⎞⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟ −
⎜ ⎟⎛ ⎞⎜ ⎟− ′⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟− +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠− ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 (17) 

 
Substituting Eqs. (15)-(17) along with (5) into Eq. 

(14) and cleaning  the denominator and collecting all 
terms with the same order of  ( ( ) ( )n nG / Gξ ξ′ ) together, 
the left hand side of Eq. (16) is converted into 
polynomial in ( ( ) ( )n nG / Gξ ξ′ ). 

Setting each coefficient of this polynomial to zero , we 
derive a set of algebraic equations for 0 1 1 1, , ,dα α β  and 

1c . Solving the set of algebraic equations by using Maple 
or Mathematica , we have: 

 
 
Case 1: 

 
( )

( )

( )
( )

2 2
2 2

1 1 13 22

22
2 2

1 1 13 22

4 4
2 4 1

24

44 2 4
24

/

/

tan d sin d ,

c tan d sin d

β αγ µ λ
α λ µ µ λ ε

γ µ λ

µ λβ αγ λ µ µ λ
γ µ λ

⎡ ⎤⎛ ⎞− −⎢ ⎥⎜ ⎟= − − − = −
⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞−− ⎢ ⎥⎜ ⎟= − −
⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦

 (18a) 
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( )
( )

( )
( )

2 2
2 2

1 1 13 22

22
2 2

1 12
0 2

2

4 4
2 4

24

44 4 41 24
2 4

4

/ tan d sin d

tan d cos d

µ β αγ µ λ
α λ µ µ λ

γ µ λ

µ λβ αγλ λ µ µ λ
α µ λ

γ µ λ
βλ µβ

−

⎡ ⎤⎛ ⎞− −⎢ ⎥⎜ ⎟= − − −
⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞−−⎢ ⎥⎜ ⎟ − − +
⎜ ⎟⎢ ⎥= − − ⎝ ⎠⎢ ⎥−

⎢ ⎥− +⎣ ⎦

 (18b) 

 
where 24µ λ− >0. 

In this case, we obtain the trigonometric solution of Eq. (15): 
 

 

( )

( )

2 2 2
2

1 13 22

2 2

1 2

1
2 2

1 2

2

1

1
2

2 4 4 4
2 2 24

4 4
2 2

2 4 4
2 2

4
22

4

n /

n n

n n

n

u tan d sin d

c sin c cos
D

c cos c sin

c sin
D

λµ β αγ µ λ µ λ β
γγ µ λ

µ λ µ λ
ξ ξ

µ λ µ λ
ξ ξ

µ λ
ξ

µ

µ λ

⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟= − − +
⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟⎜ ⎟ ⎜ ⎟− +
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟− +

⎜ ⎟⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎜ ⎟+
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ −
−

⎝−
−

1
2

2

22 2

1 2

4
2

44 4
2 2

n

n n

c cos

c cos c sin

µ λ
ξ

λ

µ λµ λ µ λ
ξ ξ

−
⎡ ⎤⎛ ⎞⎞ ⎛ ⎞−⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟+
⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎠ ⎝ ⎠⎢ ⎥⎜ ⎟ −
⎢ ⎥⎜ ⎟⎛ ⎞ ⎛ ⎞ −− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟+

⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

 

(19) 

 

where: 
( ) ( )

2
2

2 1

1 2
2

1

4
4 2

4
2 4

tan d
D

sin d

µ λ
λβ αγ

γ µ λ
µ µ λ

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟ +− ⎜ ⎟⎢ ⎥= ⎝ ⎠⎢ ⎥− ⎢ ⎥− −⎢ ⎥⎣ ⎦

 and: 
( )

2

1 1 02

4
4

n d n D t β αγξ ξ
µ λ
−

= − +
−

. 

 
Case 2: 

  

( )
( )

( )
( )

( )
( )

2 2
2 2

1 1 13 22

22
2 2

1 1 13 22

2 2
2 2

1 1 13 22

0

4 4
2 4 1

24

44 2 4
24

4 4
2 4

24

1
2

/

/

/

tanh d sinh d ,

c tanh d sinh d

tanh d sinh d

β αγ λ µ
α λ µ λ µ ε

γ λ µ

λ µβ αγ λ µ λ µ
γ λ µ

µ β αγ λ µ
α λ µ λ µ

γ λ µ

α

−

⎡ ⎤⎛ ⎞− −⎢ ⎥⎜ ⎟= − − − =
⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞−− ⎢ ⎥⎜ ⎟= − −
⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞− −⎢ ⎥⎜ ⎟= − − −
⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦

= −
( ) ( )

22
2 2 2

1 122

44 4 4 4
244

tanh d cosh d
µ λβ αγλ λ µ λ µ βλ µβ

λ µγ λ µ

⎡ ⎤⎛ ⎞−−⎢ ⎥⎜ ⎟ − − − +
⎜ ⎟⎢ ⎥−− ⎝ ⎠⎣ ⎦

 

(20) 

 
where 2 4λ µ− >0. In this case, we obtain the hyperbolic solution of Eq.(15): 
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( )

( )

2 2 2
2

1 13 22

2 2

1 2

2
2 2

1 2

2

1

2
2

2 4 4 4
2 24

4 4
2 2

2 2 4 4
2 2

4
22

4

n /

n n

n n

u tanh d sinh d

c sinh c cosh
D

c cosh c sinh

c sinh
D

λµ β αγ λ µ λ µ

γ λ µ

λ µ λ µ
ξ ξ

β
γ λ µ λ µ

ξ ξ

λ µ

µ

λ µ

⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟= +
⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟⎜ ⎟ ⎜ ⎟+
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎜ ⎟− − +

⎜ ⎟⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎜ ⎟+
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

−

−
−

1
2

2

22 2

1 2

4
2

44 4
2 2

n n

n n

c cosh

c cosh c sinh

λ µ
ξ ξ

λ

λ µλ µ λ µ
ξ ξ

−
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞−⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟+
⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎜ ⎟ −
⎢ ⎥⎜ ⎟⎛ ⎞ ⎛ ⎞ −− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟+

⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

 

(21) 

 
where: 
 

( ) ( )

2
2

2 1

2 2
2

1

4
4 2
4

2 4

tanh d
D

sinh d

λ µ
λβ αγ

γ λ µ
µ λ µ

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟ +− ⎜ ⎟⎢ ⎥= ⎝ ⎠⎢ ⎥− ⎢ ⎥− −⎢ ⎥⎣ ⎦  
 
and: 

2

1 2 02
4
4n d n D t β αγξ ξ

λ µ
−

= − +
−

 

 

Note that, there are other cases which are omitted 
here. We just list some exact solutions corresponding to 
case 1,2 to illustrate  the effectiveness of the improved 
( G / G′ ) – expansion  method. 

III.2. Example 2. The Relativistic Toda                     
Lattice Equations 

In this subsection, we study Relativistic Toda lattice 
equations which take  the following forms [36]: 

 

 

( ) ( )( )

( ) ( )

1

1 1 1

1n
n n n

n
n n n n n

du t
u v v

dt
dv t

v u u v v
dt

α

α α

−

+ + −

= + −

= − + −

 (22) 

 

where α  is a nonzero constant. Using  the 
transformation ( )n n nu U ξ= , ( )n n nv V ξ= and  

1 1 0n d n c tξ ξ= + +  then Eq. (22) become: 
 

 
( ) ( )( )
( ) ( )

1 1

1 1 1 1

1n n n n n

n n n n n n n

c U u v v

c V v u u v v

ξ α

ξ α α
−

+ + −

′ = + −

′ = − + −
 (23) 

 

where 1d , 1c , 0ξ  are constants and n' d / dξ= .  
Considering the homogeneous balance between the 
highest order derivatives  and the nonlinear terms in (23), 
we have: 
 

 
( ) ( )

( )
( )
( )0 1 1

1 10 0

n n
n n

n n

G G
U ,

G G

or

ξ ξ
ξ α α α

ξ ξ

α α

−

−

′⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠

≠ ≠

 (24) 

 

 

( ) ( )
( )
( )

( )

( )
( ) ( )

( )

( ) ( )
( )
( )

( )

2

1
22

1 1
2

1
2

2

1
22

1

42
2 244

2 2421
2 24

42
2 244

2

n

n

n

n

n

n

n

G
f d

G
U

G
f d

G

G
f d

G

ε λ µξ λ ε
ξε λ µε λ µ λα

ε λ µ ξ λ
ξε λ µ

ε λ µξ λ ε
ξε λ µε λ µ

α

±

−

⎛ ⎞⎛ ⎞⎛ ⎞−′⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟+ ±⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟− ⎜ ⎟⎜ ⎟− ⎝ ⎠⎜ ⎟⎜ ⎟= − +

⎜ ⎟⎛ ⎞⎜ ⎟− ′⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟± +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠− ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

−′⎛ ⎞
+ ±⎜ ⎟⎜ ⎟

⎝ ⎠−−
+

( )
( ) ( )

( )

1

0
2

1
2

2421
2 24

n

n

G
f d

G

λ α
ε λ µ ξ λ

ξε λ µ

−
⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟ − +
⎜ ⎟⎛ ⎞⎜ ⎟− ′⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟± +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠− ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 (25) 
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and: 
 

  
 

 
( ) ( )

( )
( )
( )0 1 1

1 10 0

n n
n n

n n

G G
V ,

G G

or

ξ ξ
ξ β β β

ξ ξ

β β

−

−

′⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠

≠ ≠

 (26) 

 

 

( ) ( )
( )
( )

( )

( )
( ) ( )

( )

( ) ( )
( )
( )

( )

2

1
22

1 1
2

1
2

2

1
22

1

42
2 244

2 2421
2 24

42
2 244

2

n

n

n

n

n

n

n

G
f d

G
V

G
f d

G

G
f d

G

ε λ µξ λ ε
ξε λ µε λ µ λβ

ε λ µ ξ λ
ξε λ µ

ε λ µξ λ ε
ξε λ µε λ µ

β

±

−

⎛ ⎞⎛ ⎞⎛ ⎞−⎛ ⎞′⎜ ⎟⎜ ⎟⎜ ⎟+ ±⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎜ ⎟⎜ ⎟− ⎝ ⎠⎜ ⎟⎜ ⎟= − +
⎜ ⎟⎛ ⎞⎜ ⎟− ′⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟± +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠− ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

−′⎛ ⎞
+ ±⎜ ⎟⎜ ⎟

⎝ ⎠−−
+

( )
( ) ( )

( )

1

0
2

1
2

2421
2 24

n

n

G
f d

G

λ β
ε λ µ ξ λ

ξε λ µ

−
⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟ − +
⎜ ⎟⎛ ⎞⎜ ⎟− ′⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟± +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠− ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 (27) 

 
Substituting Eqs. (24)-(27)  along with (5) into Eqs. 

(23) and cleaning the denominator and collecting all 
terms with the same order of  ( ( ) ( )n nG / Gξ ξ′ ) together, 
the  left hand sides of Eqs. (23) are converted into 
polynomials in ( ( ) ( )n nG / Gξ ξ′ ). Setting each 

coefficient of these polynomials to zero, we derive a set 
of algebraic equations for 0 1 1 0 1, , , , ,α α α β β−  1 1,dβ−  and 

1c . Solving the set of algebraic equations by using Maple 
or Mathematica , we get the following cases: 

 
Case 1: 

 
( )

1
1 1 1

2
2 2 21

0 1 1

2 2
1 1 1

0

1 1

1

41 4 2
2 2

4 4
2 2 2

0

, , c ,

d
coth

d
coth

αβ
ε α αβ

µ

λ µ
α α β λ µ µ α β λ

µα

β λ µ λ µ λβ
β

µ µ

β α

−
− −

− −

− −

= = − =

⎧ ⎫⎡ ⎤−⎪ ⎪⎢ ⎥= − − + +⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎡ ⎤− −⎢ ⎥= +
⎢ ⎥⎣ ⎦

= =

 (28) 

 
where 1d  and 1β−  are arbitrary constants. 

In this case, we obtain the hyperbolic solutions of  Eqs. (22) in the following forms: 
 

 

( )
2

2 2 21
1 1

1
2 2

1 22

1
2 2

1 2

41 4 2
2 2

4 4
2 24

2 24 4
2 2

n

n n

n n

d
U coth

C sinh C cosh

C cosh C sinh

λ µ
α β λ µ µ α β λ

µα

λ µ λ µ
ξ ξ

λ µ λαβ
λ µ λ µ

ξ ξ

− −

−

−

⎧ ⎫⎡ ⎤−⎪ ⎪⎢ ⎥= − − + + +⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟+
⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎢ ⎥⎜ ⎟− −
⎢ ⎥⎜ ⎟⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟+

⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

 

(29) 
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and: 

 

2 2
1 1 1

1
2 2

1 22

1
2 2

1 2

4 4
2 2 2

4 4
2 24

2 24 4
2 2

n

n n

n n

d
V coth

C sinh C cosh

C cosh C sinh

β λ µ λ µ λβ
µ µ

λ µ λ µ
ξ ξ

λ µ λβ
λ µ λ µ

ξ ξ

− −

−

−

⎡ ⎤− −⎢ ⎥= + +
⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟+
⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎢ ⎥⎜ ⎟+ −
⎢ ⎥⎜ ⎟⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟+

⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

 (30) 

 
where: 

1
1 0n d n t

αβ
ξ ξ

µ
−= + +  

 
Case 2: 

 

 
( )

1 1 1 1

2
2 1

0 1

2
1

2
2 1 1

0 1

1 1

1

41 4
2 2

2

2

41 4
2 2 2

0

, , c ,

d
coth

d
coth

ε α αβ αβ

λ µ
α β α λ µ

α β λ

α

λ µ λβ
β β λ µ

β α− −

= = − = −

⎡ ⎤−⎢ ⎥= − +
⎢ ⎥⎣ ⎦

+
−

⎡ ⎤−⎢ ⎥= − − +
⎢ ⎥⎣ ⎦

= =

 (31) 

 
where 1d  and 1β  are arbitrary constants. 

In this case, we obtain the hyperbolic solutions of  Eqs. (22) in the following forms: 
 
 

 

2
2 1

1

2 2

1 2
2

1
2 2

1 2

41 14
2 2

4 4
2 21 4

2 4 4
2 2

n

n n

n n

d
U coth

C sinh C cosh

C cosh C sinh

λ µ
β α λ µ

α

λ µ λ µ
ξ ξ

αβ λ µ
λ µ λ µ

ξ ξ

⎡ ⎤−⎢ ⎥= − − +
⎢ ⎥⎣ ⎦

⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟⎜ ⎟ ⎜ ⎟+
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎜ ⎟− −

⎜ ⎟⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎜ ⎟+
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (32) 

 
and: 
 

 

2
2 1

1

2 2

1 2
2

1
2 2

1 2

41 4
2 2

4 4
2 21 4

2 4 4
2 2

n

n n

n n

d
V coth

C sinh C cosh

C cosh C sinh

λ µ
β λ µ

λ µ λ µ
ξ ξ

β λ µ
λ µ λ µ

ξ ξ

⎡ ⎤−⎢ ⎥= − − +
⎢ ⎥⎣ ⎦

⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟⎜ ⎟ ⎜ ⎟+
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎜ ⎟+ −

⎜ ⎟⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎜ ⎟+
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (33) 
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where: 
1 1 0n d n tξ αβ ξ= − +  

 
 
Case 3: 
 

 
( )

1
1 1 1

2 2 2 2
0 1 1 1

2
21 1

0 1

1 1

1

1 14 4 2
2 2

4 1 4
2 2 2

0

, , c ,

cot d

cot d

αβ
ε α αβ

µ

α α β µ λ µ λ µ α β λ
µα

β µ λ λβ
β µ λ

µ µ
β α

−
− −

− −

− −

= − = − =

⎧ ⎫⎡ ⎤= − − − + +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

− ⎡ ⎤= − +⎢ ⎥⎣ ⎦
= =

 (34) 

 
where 1d  and 1β−  are arbitrary constants. 

In this case, we obtain the trigonometric solutions of of Eqs. (22) in the following forms: 
 

 

( )2 2 2 2
1 1 1

1
2 2

1 22

1
2 2

1 2

1 14 4 2
2 2

4 4
2 24

2 24 4
2 2

n

n n

n n

U cot d

C sin C cos

C cos C sin

α β µ λ µ λ µ α β λ
µα

µ λ µ λ
ξ ξ

µ λ λαβ
µ λ µ λ

ξ ξ

− −

−

−

⎧ ⎫⎡ ⎤= − − − + + +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟− +
⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎢ ⎥⎜ ⎟− −
⎢ ⎥⎜ ⎟⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟+

⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

 (35) 

 
and: 
 

 

 

2
21 1

1

1
2 2

1 22

1
2 2

1 2

4 1 4
2 2 2

4 4
2 24

2 24 4
2 2

n

n n

n n

V cot d

C sin C cos

C cos C sin

β µ λ λβ
µ λ

µ µ

µ λ µ λ
ξ ξ

µ λ λβ
µ λ µ λ

ξ ξ

− −

−

−

− ⎡ ⎤= − + +⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟− +
⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎢ ⎥⎜ ⎟+ −
⎢ ⎥⎜ ⎟⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟+

⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

 (36) 

 
where: 
 

1
1 0n d n t

αβ
ξ ξ

µ
−= + +

  
Case 4: 

 

 

( )
1 1 1 1

2
12 2

0 1 1

2 2 1
0 1 1

1 1

1

21 14 4
2 2 2

1 14 4
2 2 2

0

, , c ,

cot d

cot d

ε α αβ αβ

α β λ
α β α µ λ µ λ

α
λβ

β β µ λ µ λ

β α− −

= − = − = −

+⎡ ⎤= − − −⎢ ⎥⎣ ⎦
⎡ ⎤= − − − +⎢ ⎥⎣ ⎦

= =

 (37) 
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where 1d  and 1β  are arbitrary constants.  
In this case, we obtain the trigonometric solutions of Eqs. (22) in the following forms: 

  

 

2 2
1 1

2 2

1 2
2

1
2 2

1 2

1 1 14 4
2 2

4 4
2 21 4

2 4 4
2 2

n

n n

n n

U cot d

C sin C cos

C cos C sin

β α µ λ µ λ
α

µ λ µ λ
ξ ξ

αβ µ λ
µ λ µ λ

ξ ξ

⎡ ⎤= − − − +⎢ ⎥⎣ ⎦
⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟⎜ ⎟ ⎜ ⎟− +

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟− −
⎜ ⎟⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎜ ⎟+

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (38) 

and: 

 

2 2
1 1

2 2

1 2
2

1
2 2

1 2

1 14 4
2 2

4 4
2 21 4

2 4 4
2 2

n

n n

n n

V cot d

C sin C cos

C cos C sin

β µ λ µ λ

µ λ µ λ
ξ ξ

β µ λ
µ λ µ λ

ξ ξ

⎡ ⎤= − − − +⎢ ⎥⎣ ⎦
⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟⎜ ⎟ ⎜ ⎟− +

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟+ −
⎜ ⎟⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎜ ⎟+

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (39) 

 
where  1 1 0n d n tξ αβ ξ= − + . 

III.3. Example 3. The (1+1) – Dimensional Toda 
Equation 

In this subsection, we study  (1+1) – dimensional 
Toda equation   which take  the following form[ 37]: 
 

 
( ) ( ) ( ) ( ) ( )1 1

2

2
n n n nu t u t u t u tnd u t

e e
dt

− +− −= −  (40) 

 
If, we  take the transformation 
( ) ( ) ( )1 1n nu t u tndv t

e
dt

− −= − , then (40)  becomes:  

 

 
( ) ( ) ( )

2

1 12 1 2n n
n n n

d v t dv t
v v v

dtdt − +
⎛ ⎞

= + − +⎜ ⎟
⎝ ⎠

 (41) 

 
Using the transformation ( )n n nv V ξ=  and  

1 1 0n d n c tξ ξ= + + , then Eqs. (41) becomes: 
 
 ( )( )2

1 1 1 11 2n n n n nc V c V V V V− +′′ ′= + − +  (42) 
 

According the homogenous balance produce , we 
have: 
 

 
( ) ( )

( )
( )
( )0 1 1

1 10 0

n n
n n

n n

G G
V ,

G G

or ,

ξ ξ
ξ α α α

ξ ξ

α α

−

−

′⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠

≠ ≠

 (43) 

 

 

( ) ( )
( )
( )

( )

( )
( ) ( )

( )

( ) ( )
( )
( )

( )

2

1
22

1 1
2

1
2

2

1
22

1

42
2 244

2 2421
2 24

42
2 244

2

n

n

n

n

n

n

n

G
f d

G
V

G
f d

G

G
f d

G

ε λ µξ λ ε
ξε λ µε λ µ λα

ε λ µ ξ λ
ξε λ µ

ε λ µξ λ ε
ξε λ µε λ µ

α

±

−

⎛ ⎞⎛ ⎞⎛ ⎞−′⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟+ ±⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟− ⎜ ⎟⎜ ⎟− ⎝ ⎠⎜ ⎟⎜ ⎟= − +

⎜ ⎟⎛ ⎞⎜ ⎟− ′⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟± +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠− ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

−′⎛ ⎞
+ ±⎜ ⎟⎜ ⎟

⎝ ⎠−−
+

( )
( ) ( )

( )

1

0
2

1
2

2421
2 24

n

n

G
f d

G

λ α
ε λ µ ξ λ

ξε λ µ

−
⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟ − +
⎜ ⎟⎛ ⎞⎜ ⎟− ′⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟± +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠− ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 (44) 
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Substituting Eqs. (43) and (44)  along with (5) into 
Eqs. (42) and cleaning  the denominator and collecting 
all terms with the same order of  ( ( ) ( )n nG / Gξ ξ′ ) 
together, the  left hand sides of Eq. (42) are converted 
into polynomial in ( ( ) ( )n nG / Gξ ξ′ ). Setting each 
coefficient of these polynomial to zero , we derive a set 
of algebraic equations for 0 1 1 1, , ,dα α α−  and 1c . Solving 
the set of algebraic equations by using Maple or 
Mathematica, we get the following cases: 
 

Case 1: 
 

 

2
1 12

2
1 1 12

2 11 4
24

2 1 4 0
24

, c sin d

sin d ,

ε µ λ
µ λ

µα µ λ α
µ λ

−

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠−

⎛ ⎞= − − =⎜ ⎟
⎝ ⎠−

 (45) 

 
where 0α  is an arbitrary constant.  In this case, we 
obtain the trigonometric solution of  Eq. (42) in the 
following form: 
 

 

1
2 2

2 1 221

0 2 2 2

1 2

4 412 4 2 242
2 24 4 4

2 2

n n

n

n n

C sin C cossin d
V

C cos C sin

µ λ µ λ
ξ ξµ µ λ

µ λ λα
µ λ µ λ µ λ

ξ ξ

−
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ − +− ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎜ ⎟= − −
⎢ ⎥⎜ ⎟⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟+

⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

 

(46) 

 
where: 
 

2
1 1 02

2 1 4
24

n d n sin d tξ µ λ ξ
µ λ

⎛ ⎞= + − +⎜ ⎟
⎝ ⎠−

 

 
 

Case 2: 
 

 2 2
1 1 1 1 12 2

2 1 2 11 4 4 0
2 24 4

, c sinh d , sinh d ,µε λ µ α λ µ α
λ µ λ µ

−
⎛ ⎞ ⎛ ⎞= = − = − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠− −

 (47) 

 
where 0α  is an arbitrary constant. In this case, we obtain the hyperbolic solution of Eq. (42) in the following form: 
 

 

1
2 2

2 1 221

0 2 2 2

1 2

4 412 4 2 242
2 24 4 4

2 2

n n

n

n n

C sinh C cosh )sinh d
V

C cosh C sinh

λ µ λ µ
ξ ξµ λ µ

λ µ λα
λ µ λ µ λ µ

ξ ξ

−
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ +− ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎜ ⎟= − −
⎢ ⎥⎜ ⎟⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟+

⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

 (48) 

 
where: 
 

2
1 1 02

2 1 4
24

n d n sinh d tξ λ µ ξ
λ µ

⎛ ⎞= + − +⎜ ⎟
⎝ ⎠−

 

 
Case 3: 

 

 
( ) ( )

( )

1 1 1 1

1 1

11 2 2
22

1 2 0
2

, sinh d , sinh d ,

c sinh d , ,

µ
ε α µ α µ

µ

µ λ
µ

−
−

= = − − = −
−

= − − =
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 (49) 
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where 0α  is an arbitrary constant. In this case, we obtain the hyperbolic solution of Eq. (42) in the following form: 
 
 

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

1 2
0 1

1 2

1
1 2

1
1 2

1 2
2

1 2
2

n n
n

n n

n n

n n

C sinh C cosh
V sinh d

C cosh C sinh

C sinh C cosh
sinh d

C cosh C sinh

µξ µξ
α µ

µξ µξ

µξ µξ
µ

µξ µξ

−

⎛ ⎞− + −
⎜ ⎟= − − +
⎜ ⎟− + −⎝ ⎠

⎛ ⎞− + −
⎜ ⎟+ −
⎜ ⎟− + −⎝ ⎠

 (50) 

 
 
where: 

( )1 1 02
2n

td n sinh dξ µ ξ
µ

= − − +
−

 

 
Case 4: 

 

 

( )

( )
( )

1 1

1 1

1 1

1
1 2

2

2
2

1 2
2
0

sin d

sin d

c sin d

ε

α µ
µ

µ
α µ

µ
µ

λ

−

= −

=

= −

=

=

 (51) 

 
where 0α  is an arbitrary constant.  In this case, we obtain the trigonometric solution of  Eq. (42) in the following form: 
 

 

( ) ( ) ( )
( ) ( )
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1 2
0 1

1 2
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1
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where: 

( )1 1 02
2n

td n sin dξ µ ξ
µ

= + +  
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Quantum Interference in a Four-Level EIT System 
and its Application to Photonic Logic Gates 

 
 

Peiyu Chen1, Jian Qi Shen1,2* 
 
 
Abstract – The intensity - and frequency - tunable probe transitions, where double-control 
destructive and constructive quantum interference is involved, in a four-level tripod-configuration 
atomic system is suggested for designing photonic logic gates. The influence of phase coherence 
between two transitions (driven by two control fields) on the probe transition is also studied. The 
real and imaginary parts of the relative electric permittivity and the relative impedance versus the 
normalized frequency detunings as well as the normalized Rabi frequencies of the two control 
fields are presented as illustrative examples to demonstrate the effects of double-control 
destructive and constructive quantum interference. The present scenario has potential applications 
in new photonic device design, e.g., logic gates and sensitive optical switches. Two photonic logic 
gates are designed by taking full advantage of the destructive and constructive quantum 
interference exhibited in the present four-level EIT (electromagnetically induced transparency) 
system. Copyright © 2011 Praise Worthy Prize S.r.l. - All rights reserved. 
 
Keywords: Electromagnetically Induced Transparency, Quantum Coherence, Quantum 

Interference, Photonic Logic Gates 
 

 

Nomenclature 

3Γ  Spontaneous emission decay rate 

2 2',γ γ  Dephasing rates 

c c',Ω Ω  Rabi frequency of the control fields 

p∆  Probe frequency detuning 

c c',∆ ∆  Frequency detunings of the control fields 
β  Atomic electric polarizability 
N  Atomic concentration of vapor 

rε  Relative electric permittivity 
α  Absorption index 

I. Introduction 
With the development of photonics and quantum 

optics, considerable attention was directed by scientists 
in many different areas at new techniques to manipulate 
light wave propagations by making use of artificial 
electromagnetic materials [1]. A particularly flexible and 
promising approach to manipulating light propagation 
has been that of quantum coherence. For example, the 
effects of quantum coherent control realized via atomic 
phase coherence, such as electromagnetically induced 
transparency (EIT), have captured intensive interest of 
many researchers over the last two decades [1]. Since a 
spectrally narrowband transmission (transparency) 
window within a quite broad absorption band can be 
established because of destructive quantum interference 

between atomic transition pathways [1], EIT is such a 
quantum optical phenomenon that if one resonant laser 
beam propagates in a medium (e.g., an atomic vapor or a 
semiconductor-quantum-dot material), the beam will get 
absorbed; but if two resonant laser beams instead 
propagate inside the same medium, neither would be 
absorbed. Thus the opaque medium becomes a 
transparent one. There are a number of phenomena that 
are relevant to EIT, including inversionless light 
amplification [2], cancellation of spontaneous emission 
[3], multi-photon population trapping [4], phase 
coherence control [5], [6] as well as EIT-induced 
negatively refracting materials [7]. Recently, EIT has 
attracted extensive attention of researchers in a variety of 
areas of atomic physics, optics, and condensed state 
physics [8]-[11]. These investigations include ultraslow 
light, superluminal propagation, and optical storage with 
atomic vapors [8]-[11]. As is well known, the probe light 
(and hence information) could be stored in a three-level 
system when turning off the control field (and would be 
read out when turning on the control field). This can be 
generalized to those cases of four-level systems, which 
can be used to realize light storage technique and device 
designs (such as logic gates, functional-operation devices 
and optical switches), so that it would open a good 
perspective of using EIT for new applications in 
technology of optical data storage and relevant 
information processing. 

Since a four-level EIT system can exhibit more 
significant dispersion sensitive to the probe frequency 
than a conventional three-level system [1], [12], the 



 
Peiyu Chen, Jian Qi Shen 

Copyright © 2011 Praise Worthy Prize S.r.l. - All rights reserved                                International Review of Physics, Vol. 5, N. 6 

334 

quantum optical properties of four-level EIT (such as 
double-control quantum interference [13], [14], transient 
turn-on and -off dynamics) as well as its application to 
photonic device design have focused intensive attention 
of some researchers [15]-[17]. 

In this paper we shall consider the double-control 
destructive and constructive quantum interference of a 
four-level tripod-configuration atomic system in more 
details, and then aim at designing some photonic logic 
gates by taking full advantage of the present quantum 
interference effects. As is known, the most remarkable 
feature of the present scheme is that the optical properties 
(absorption, transparency and dispersion) of an atomic 
system can be manipulated via the double-control 
multi-pathway interferences (multiple routes to excitation) 
[13], [14]. Such a four-level system will exhibit a 
two-level resonant absorption because the two control 
levels (driven by the two control fields) can form a dark 
state (and hence the destructive quantum interference 
occurs between the two transitions driven by the two 
control fields). 

However, the present four-level system will also 
exhibit electromagnetically induced transparency to the 
probe field when the three lower levels (including the 
probe level and the two control levels) form a three-level 
dark state. Thus, the present scenario could find potential 
applications in designing a number of new devices (e.g., 
logic gates and sensitive optical switches) and would 
enable physicists to develop new techniques (e.g., 
quantum coherent information storage). 

II. A Theoretical Model                 
for a Four-Level EIT 

Here we shall address the intriguing optical behavior 
of this four-level EIT atomic vapor. Consider a four-level 
atomic system with three ground levels |1>, |2>, |2’> and 
one excited level |3> (see Fig. 1 for its schematic 
diagram). This atomic system interacts with the electric 
fields of the probe wave and the two control light waves, 
which drive the |1>-|3>, |2>-|3> and |2’>-|3> transitions, 
respectively. As there are two control fields and one 
probe field interacting with the four-level system, the 
multilevel transitions, where the constructive and 
destructive interference among various transition 
pathways will arise, would give rise to novel optical 
behavior of the EIT medium [13], [14]. If, for example, 
the ratio of the intensities (characterized by the squares 
of the Rabi frequencies, i.e., *

c cΩ Ω  and *
c' c'Ω Ω ) of the 

two control fields are taken to be certain proper values, 
the double-control destructive interference between 
|2>-|3> and |2’>-|3> transitions would occur. Then, it 
seems that the two levels |2> and |2’> as well as the two 
control fields ( cΩ , c'Ω ) are absent, and hence the 
four-level system would be reduced to a simple two-level 
system {|1>, |3>} [14]. Thus, under this condition, the 
four-level EIT vapor is no longer transparent to the probe 
field.  

 
 

Fig. 1. The schematic diagram of a four-level tripod-configuration EIT 
atomic system. If one of the two control fields is switched off, the 
system will be reduced to a three-level one, and if both of the two 

control fields are switched off, it becomes a simple two-level system 
 
The Schrödinger equation that governs the density 

matrix elements of the four- level atomic system is given 
by [13], [14]: 
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 (1) 

 
Here, 3Γ  and 2 2',γ γ  stand for the spontaneous 

emission decay rate and the collisional dephasing rates 
(nonradiative decay rates), respectively. c c',Ω Ω  and 

pΩ  denote the Rabi frequencies of the two control fields 
and the probe field. 

They are defined though 32c cE /Ω =℘ , 

32c' ' c'E /Ω =℘  and 31p pE /Ω =℘  respectively, 

with cE , c'E  and pE  the slowly-varying amplitudes 
(envelopes) of the control fields and the probe field. The 
frequency detunings of the three applied optical fields are 
defined as 31p pω ω∆ = − , 32c cω ω∆ = − , and 

32c' ' c'ω ω∆ = −  with pω  and cω , c'ω  the mode 
frequencies of the probe and control fields, respectively. 
In general, the population ( 11ρ ) in the ground level 1  
is almost unity (i.e., 11 1ρ → ).  

t should be noted that the three-level EIT system is a 
special case of the four-level system. If, for example, one 
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of the control fields, say, c'Ω , is switched off (i.e., 
0c'Ω = ), then the present four-level atomic system will 

be reduced to a three-level system. 
In order to treat the optical response of the atomic 

system, we should have to solve the dynamical equation 
(1). 

As the intensity of the probe field is sufficiently weak, 
the terms that contain 3p iρΩ  in Eq. (1) are negligibly 
small. Under this condition, one can obtain the steady 
solution to Eq. (1): 
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here the parameter D  in the denominator is defined by: 
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By using the definition of the atomic electric 

polarizability, ( )13 31 02 p/ Eβ ρ ε= ℘ , one can arrive at: 
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The relative electric permittivity, where the local field 

effect caused by the dipole-dipole interaction between 
neighboring atoms has been taken into account, is given 
by: 

 1
1

3

N
N
βε
β

= +
−

r  (5) 

 
We shall also in this paper consider the absorption of 

the four-level atomic vapor to the probe light. The 
absorption index is defined by: 
 

 
{ }
{ }

2
Im n
Re n

α π= r

r
 (6) 

It follows from the solutions (2) and (3) that the 
frequency detunings c∆ , c'∆  and the Rabi frequencies 

cΩ , c'Ω  are the tunable parameters of the present 
four-level system. Whether it is the destructive or 
constructive quantum interference (among the transition 
pathways 1 - 3 , 2 - 3  and 2' - 3  driven by the 
three optical fields) is determined by these tunable 
parameters, particularly by the two Rabi frequencies cΩ , 

c'Ω . 

III. Optical Properties of a Four-Level EIT 
via Quantum Interference Involved in 

Atomic Phase Coherence 
We shall now consider the optical behavior induced by 

the destructive and constructive quantum interference. 
The atomic parameters of the present atomic vapor are 
given as follows: the spontaneous emission decay 
rate 7 1

3 2 0 10 s. −Γ = × , the dephasing 

rate 5 1
2 1 0 10 s.γ −= × , 5 1

2 2 0 10 s' .γ −= × , the 

electric-transition dipole moment 29
13 1 0 10 C m. −℘ = × ⋅ , 

and the atomic concentration 20 31 0 10 mN . −= × . The 
general dispersive behavior (as well as its absorption 
index and relative impedance) of the four-level atomic 
vapor is presented in Figs. 2-4, respectively. Here the two 
frequency detunings of the two control fields and their 
Rabi frequencies are chosen as 

7 1
31 5 3 0 10 sc . . −∆ = Γ = × , 7 1

34 8 0 10 sc' . −∆ = Γ = ×  and 
7 14 0 10 sc . −Ω = × , 7 18 0 10 sc' . −Ω = × . From the 

imaginary part of rε  in Fig. 2 (as well as the absorption 
index α  in Fig. 3), one can see that there are three 
Autler-Townes absorption peaks (i.e., the Autler-Townes 
triplet), which are located at 31 5p c .∆ = ∆ = Γ  and 

34p c'∆ = ∆ = Γ . The imaginary part of rε  and the 
absorption index α  will take their minimums among 
the three Autler-Townes peaks. This corresponds to the 
fact that the transition pathways 2 - 3  and 2' - 3  
driven by the control fields destructively interference 
with the probe transition pathway 1 - 3 , and hence 
two spectrally narrowband transmission (transparency) 
windows opens up within the broadband absorption line 
[18]. It can also be seen that both the relative permittivity 
and the impedance would tend to 1 when the probe 
frequency detuning p∆  approach c∆  or c'∆ . This 
yields the double-control EIT effect. 

We shall now concentrate our attention on the 
influence of the frequency-tunable control laser beams on 
the four-level atomic population. The real and imaginary 
parts of the relative electric permittivity and the 
impedance are plotted in Fig. 5 and the absorption index 
in Fig. 6, where the two Rabi frequencies of the two 
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control fields are chosen as 7 14 0 10 sc . −Ω = × , 
7 18 0 10 sc' . −Ω = ×  and the probe frequency is 

7 11 0 10 sp . −∆ = × . 
 

 
 

Fig. 2. The relative electric permittivity versus the normalized 
frequency detuning of the probe field. There are three peaks and three 

valleys in the dispersion curve of the real part of the four-level 
permittivity, and three peaks and two valleys in the dispersion curve of 

its imaginary part 
 

 
 
Fig. 3. The absorption index versus the normalized frequency detuning 

of the probe field 
 

 
 

Fig. 4. The relative impedance versus the normalized frequency 
detuning of the probe field 

 
It follows from Fig. 5 that the imaginary part of the 

electric permittivity vanishes and the real part would be 
unity when the frequency detunings c∆  and c'∆  of the 
control fields tend to the probe frequency p∆ . The 

three-dimensional behavior of the absorption index 
plotted in Fig. 6 shows that the loss of the four-level 
atomic vapor would be quite large when the frequency 
detunings c∆  and c'∆  deviate from the probe 
frequency p∆ . This would lead to the Autler-Townes 
peaks (Autler-Townes triplet). 

 

 
 
Fig. 5. The real and imaginary parts of the relative electric permittivity 

and the impedance versus the normalized frequency detuning of the two 
control fields 

 

 
 

Fig. 6. The absorption index versus the normalized frequency detuning 
of the two control fields

  
We have studied the tunable optical response that is 

caused when one tunes the frequencies (and hence the 
frequency detunings) of the control fields. Now we are in 
a position to consider another controllable optical 
behavior that is induced by the tunable Rabi frequencies 
of the two control fields. In Fig. 7 and Fig. 8, the fixed 
parameters of frequency detunings are given 
by 7 13 0 10 sc . −∆ = × , 7 18 0 10 sc' . −∆ = × , and 

7 11 0 10 sp . −∆ = × . The real and imaginary parts of the 
relative electric permittivity and the impedance are 
presented as an illustrative example. From the imaginary 
part of the permittivity rε  in Fig. 7 and the absorption 
index in Fig. 8, one can find that the absorption (loss) of 
the atomic vapor would decrease when one of the Rabi 
frequencies cΩ , c'Ω  increases (this makes the ground 
level 1  become a dark state automatically). But it 
should be emphasized that when the ratio c' c/Ω Ω  are 
taken to be certain values, the absorption index would 
increase rapidly because there is destructive interference 
between the |2>-|3> and |2’>-|3> transitions, namely, 
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levels 2  and 2'  form a new dark state, which can 

be expressed by ( )2 2c' cN 'Ω −Ω  with the 

normalized coefficient 1 * *
c c c' c'N /= Ω Ω +Ω Ω . Under 

this condition, it seems that the two control fields 
c c',Ω Ω  as well as the two levels 2  and 2'  are not 

present, and hence the four-level system 
{ }1 2 2 3, , ' ,  is reduced to a two-level system 

{ }1 3, . Since now the steady density matrix element of 

the 1 - 3  transition driven by the probe field 

is ( )31 11 32p pi / iρ ρ ⎡ ⎤= Ω Γ + ∆⎣ ⎦  (an expression for a 

typical response of two-level resonant absorption), an 
effect of significant absorption to the probe field will 
arise because of the double-control destructive quantum 
interference between the two transition pathways 
2 3→  and 2 3' → . 

 

 
 
Fig. 7. The real and imaginary parts of the relative electric permittivity 
and the impedance versus the normalized Rabi frequencies of the two 

control fields 
 

 
 
Fig. 8. The absorption index versus the normalized Rabi frequencies of 

the two control fields 
 

In a word, the multilevel atomic coherence (various 
quantum interference effects) can be controllably 
manipulated by adjusting the intensities (or the Rabi 
frequencies) and the mode frequencies of the control 
fields. 

In the section that follows, we shall design some 
typical photonic logic gates in order to show how the 
double-control quantum interference works in photonic 
devices. 

IV. Design of Photonic Logic Gates 
In the preceding section, we have shown the EIT 

phenomena depending on the frequency detunings and 
the Rabi frequencies, the latter of which indicate the light 
intensities of the control fields. According to the 
simulation results presented in the above, the four-level 
tripod-configuration atomic system becomes transparent 
or opaque to the probe beam when one tunes control 
beams’ frequency detunings or control beams’ light 
intensity. 

With some appropriate definitions, these interesting 
EIT characteristics can be used to make basic logic 
operations, such as OR and EX-OR. Here, two photonic 
logic gates (OR Gate and EX-OR Gate) will be designed 
based on the EIT effect exhibited by the present 
four-level tripod-configuration atomic system. 

First of all, two groups of definitions need to be 
clarified. One group is F (Frequency) EIT and I (Intensity) 
EIT. The other is DIM (Destructive quantum Interference 
Mechanism) and CIM (Constructive quantum 
Interference Mechanism). We shall interpret these two 
groups as follows: 
i) FEIT means that the frequency detunings are used as 

inputs in the EIT-based logic gates. The logic 
function is operated by changing light’s frequency 
detunings. The IEIT means that EIT photonic logic 
gates utilize light intensities as inputs and the logic 
gates work when the control light intensities change. 

ii) DIM (Destructive quantum Interference Mechanism) 
means that the two control beams intensities are 
adjusted to meet 1 1 2 2 0a aΩ +Ω  (destructive 
quantum interference). Thus the four-level system is 
equivalent to a two-level system that can exhibit giant 
absorption. CIM (Constructive quantum Interference 
Mechanism) means that the two control beams 
intensities fulfill 1 1 2 2 0a aΩ −Ω  [14]. Under this 
condition, the probe field cannot be absorbed because 
of the constructive quantum interference between the 
|2>-|3> and |2’>-|3> transition pathways driven by the 
two control beams. 

We are now in a position to present the working 
mechanisms of the EIT-based photonic logic gates (OR 
Gate and EX-OR Gate), which work by taking full 
advantage of the tunable optical responses of the 
four-level atomic system. 

IV.1. OR Gate 

This photonic logic gate is based on a four-level FEIT 
CIM tripod-configuration atomic system.  According to 
the simulation result in Fig. 5 and Fig. 6, we shall design 
the OR logic gate. Rather than by changing the intensity 
of the two control beams, this OR logic gate operates the 
logical function by changing the frequency of control 
beams, which is available for some kinds of lasers (e.g. 
dye laser or 3

2 30:Ti Al+  laser). When the frequency 
detuning ( c∆  or c'∆ ) of the control beam is equal to 
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the frequency detuning ( p∆ ) of the probe beam, we 
define that the logic operation INPUT1 or INPUT2 is 1. 
However, when the frequency detuning is much larger 
than the decay rate ( 3Γ ), such as 36c c'∆ = ∆ = − Γ , the 
logic operation INPUT1 or INPUT2 is defined as 0. Note 
that the probe beam is always present, and its frequency 
detuning is as small as possible (i.e., the probe field is 
almost resonant with the |1>-|3> transition). When the 
probe field is transmitted through the atomic medium 
without loss, the logic operation OUTPUT is 1. 
Otherwise, OUTPUT is 0. The schematic diagram of the 
OR gate is presented in Fig. 9, and the truth table is given 
in Table I. 

 
 
Fig. 9. The schematic diagram of the photonic OR gate designed based 
on the four-level tripod-configuration EIT atomic system. The probe 
beam and the two control beams, viewed as INPUT signals, are always 
present. The transmitted probe beam is viewed as an OUTPUT signal 

 
TABLE I 

THE TRUTH TABLE OF THE OR GATE BASED ON THE EIT 
PHENOMENON OF THE FOUR-LEVEL TRIPOD-CONFIGURATION 

ATOMIC SYSTEM 
2 INPUT OR GATE 

A B Q 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

 
The working mechanism of the photonic OR logic 

gate is given as follows: when the frequency detuning 
( c∆  or c'∆ ) of any of the two control beams are equal 
to that of the probe beam ( p∆ ), the four-level 
tripod-configuration atomic vapor is transparent to the 
probe beam and the probe beam is transmitted through 
the device without absorption, i.e. OUTPUT = 1.  

However, if either of the control beams is far away 
from the resonant frequencies, i.e. c p∆ → ∆  or 

c' p∆ → ∆ , the atomic vapor will present a sharp 
absorption of the probe beam, i.e. OUTPUT = 0. 

IV.2. EX-OR Gate 

This photonic logic gate is designed based on a 
four-level IEIT DIM tripod-configuration atomic system 

(e.g., the simulation result shown in Fig. 7 and Fig. 8). 
We suppose that both of the two control beams with Rabi 
frequency 1 and Rabi frequency 2 are at the resonant 
frequency for the atomic system to exhibit zero 
absorption, i.e., c p∆ → ∆  and c' p∆ → ∆ . The input 
logic operation (INPUT1 or INPUT2) is equal to 1 when 
the input control beam is switched on, and is equal to 0 
when the input control beam is switched off. Note that 
the probe beam is always present. We stipulate that the 
output logic operation is 1 when the probe beam is 
transmitted through the photonic device without 
absorption, and 0 when the probe beam loses its energy 
because of the giant absorption in the atomic medium. 
The schematic diagram of the EX-OR gate is presented 
in Fig. 10, and the truth table is given in Table II. 

 

 
 

Fig. 10. The schematic diagram of an EX-OR gate (I-Form EIT logic 
gate) designed based on the four-level tripod-configuration atomic 

system 
 
The working mechanism of the photonic EX-OR logic 

gate is given as follows: This EX-OR logic gate makes 
use of Destructive quantum Interference Mechanism 
(DIM). The two control beams (with its frequency close 
to the resonant frequency, i.e., c p∆ → ∆  and 

c' p∆ → ∆ ) play the role of inputs (i.e. INPUT1 & 
INPUT2). 

Choose the proper intensity of the two control fields to 
fit the definition of DIM (i.e. 2 2 0c c' 'a aΩ +Ω = ). When 
both of the two control beams are switched off (i.e. 
INPUT1 = 0 and INPUT2 = 0), the atomic vapor will 
become a two-level system and thus the resonant 
absorption will happen, and so the atomic vapor medium 
is opaque to the probe beam, i.e. OUTPUT = 0; If only 
one of the control beams is switched on (i.e. INPUT1 = 0, 
INPUT2 = 1 or INPUT1 = 1, INPUT2 = 0), the atomic 
vapor is a three-level system and then the single-control 
EIT to the probe beam will arise in this DIM vapor 
medium. The probe beam will propagate through the 
device without absorption, i.e. OUTPUT = 1; If both of 
the two control beams are switched on (i.e. INPUT1 = 1, 
INPUT2 = 1), the destructive quantum interference 
between the |2>-|3> and |2’>-|3> transition pathways 
(driven by the two control beams) will occur, and thus 
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the four-level system is equivalent to a two-level system, 
which can exhibit large resonant absorption, i.e. 
OUTPUT = 0. 
 

TABLE II 
THE TRUTH TABLE OF EX-OR LOGIC GATE BASED ON THE EIT 
PHENOMENON OF THE FOUR-LEVEL TRIPOD-CONFIGURATION 

ATOMIC SYSTEM 

2 INPUT EX-OR GATE 

A B Q 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

V. Concluding Remarks 
The optical property of a multilevel atomic vapor can 

be manipulated by controlling the quantum interference 
between the control transitions driven by the control 
fields. 

A four-level system, where a three-level dark state is 
involved, shows more flexible optical responses than a 
conventional three-level EIT system [1]. EIT and the 
relevant quantum coherent effects would lead to many 
applications, e.g., designs of new photonic and quantum 
optical devices. 

In this paper, we have investigated the tunable optical 
property that is induced by the double-control quantum 
interference. 

The double-control quantum interference would be 
applicable to some new all-optical techniques, where one 
photon field can coherently control the other. Since all 
these new systems that would have promising 
applications in photonic technology (including designs of 
all-optical devices) have exhibited quantum coherent 
effects, we hope that the presented work of multilevel 
coherent control with a double-control four-level system 
may stimulate a new interest in this area, and that it 
would be experimentally realized in the near future. 
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Negative Matter, Dark Matter and Theoretical Test 
 
 

Yi-Fang Chang 
 
 
Abstract – The existence of the dark matter and the dark energy is a basic and complex problem. 
We discuss the Dirac’s negative energy state. It should be a negative matter with some new 
characteristics, which are mainly the gravitation each other, but the repulsion with all positive 
matter. Such the positive and negative matters are two regions of topological separation in 
general case, and the negative matter is invisible. This is the simplest candidate of dark matter, 
and can explain some characteristics of the dark matter and dark energy. Recent phantom on dark 
energy is namely a type of negative matter. Based on a basic axiom and the two foundational 
principles of the negative matter, we research its predictions and possible tests. The negative 
matter should be a necessary development of Dirac theory. Finally, we propose the three basic 
laws of the negative matter. The existence of four matters on positive, opposite, and negative, 
negative-opposite particles will form the most perfect symmetrical world. Copyright © 2011 
Praise Worthy Prize S.r.l. - All rights reserved. 
 
Keywords: Dark Matter, Negative Matter, Dark Energy, Repulsive Force, Test 
 

 

I. Introduction 
The existence of the dark matter and the dark energy 

is a basic and complex problem. The dark matter in the 
solar neighborhood, in the Galaxy, in group of galaxies 
and cluster of galaxies, in the universe, is confirmed by 
the mass-to-light ratio and the galactic rotational curves, 
etc [1]. Now investigation of dark matter is a focus of 
fundamental interest to astronomers, astrophysicists, 
cosmologists, and nuclear and particle physicists [2]. 

Since 1981, the dark energy as a huge repulsive force 
is proposed in order to explain the acceleration of 
inflation in the universe [3], and may unify many 
different results of observations. Usually assume that the 
dark energy is a scalar field, which connects with the 
cosmological constant Λ  [4], and it as the modified 
general relativity can explain many effects of the dark 
energy, but cannot explain the dark matter. 

The Scientists proposed two different concepts: the 
dark matter and the dark energy, whose reason is both 
different exhibitions. The dark matter seems to have 
mass and may become huge conglomeration. 
Cosmologists compute that the gravitational 
conglomeration of these dark matters is a key function 
for the process formed galaxies from general matter. But 
the dark energy seems to be zero mass, and distributes 
uniformly in the whole space, and its interactions are 
repulsive. At present in the universe the dark matter has 
about 24% and the dark energy has about 72%, only 4% 
is visible matter. The dark matter is possibly the weakly 
interacting massive particle (WIMP), neutrino with mass, 
baryonic dark matter and nonbaryonic dark matter [5], 
[6], monopole,  supersymmetric dark matter [7],  axion  

[8], etc. Cosmologist divides the candidate of the dark 
matter into three types: hot, warm and cold dark matter. 
The dark energy seems to be the energy of vacuum. 

Based on observations of a remarkable cosmic 
structure called the bullet cluster, Bradac, et al., 
discovered that this structure is actually two clusters 
of galaxies passing through one another [9]. Past 
observations have shown that only a very small 
percentage of mass in the universe can be explained by 
regular matter. The new research is the first to detect 
luminous matter and dark matter independent of one 
another, with the luminous matter clumped together in 
one region and the dark matter clumped together in 
another. These observations demonstrate that there are 
two types of matter: one visible and one invisible. 

Scherrer proposed a new k-essence models in which 
the Lagrangian p is a function only of the derivatives of a 
scalar field. In the model the universe fills a kind of 
invisible fluid, and the models can serve as a unified 
model for dark matter and dark energy [10]. Soleng 
discussed dark matter and non-Newtonian gravity from 
general relativity coupled to a fluid of strings [11]. But, 
the tests of some known theories are very difficult. 

II. Dirac’s Negative Energy State 
It is well-known that Dirac predicted anti-particles 

from its equation and the negative energy state, and he 
emphasized: we cannot ignore the negative energy states 
[12]. In order to prevent to jump continuously from 
positive energy state to negative energy state in the 
quantum theories, and keep the stability of world, Dirac 
proposed that as long as suppose that all the states of 
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negative energy are occupied except perhaps a few of 
small velocity. The vacuum of the realistic world has 
already been filling with all negative energy state, such 
the Pauli exclusion principle will come into play and 
prevent more than one electron going into any one state, 
and avoid this jumping difficulty. It is namely the 
well-known Dirac negative energy sea and whose 
vacancy or hole, which is an anti-particle (or opposite 
particle). From this the annihilation and creation between 
positive and opposite particles may be predicted. There is 
exact description in <The Principles of Quantum 
Mechanics> [13]. But, it prevent only jump of fermions, 
but cannot be applied to bosons. Therefore, the stability 
problem exists still. The negative energy state appears in 
all relativity theories, also in the classical theory [12]. 

The negative energy corresponds to the negative mass, 
so scientists consider that it will accelerate along a 
contrary direction under a force according to the Newton 
second law. Further, Bondi [14] considered three kinds 
of mass according to the measurement: inertial, passive 
gravitational, and active gravitational mass, and there are 
four cases. Here the negative matter responds perversely 
to nongravitational forces, responds like ordinary matter 
to gravitational forces, but produces repulsive 
gravitational fields. But, this is a question: Bondi 
believes that the positive body will attract the negative 
one (since all bodies are attracted by it), etc. According 
to the principle of equivalence in general relativity, 
inertial mass and gravitational mass should be equal 
always. Therefore, there are only three cases: positive 
and positive matters, positive and negative matters, 
negative and negative matters. 

According to the mass-energy relation in Einstein's 
relativity, the Dirac's negative energy should correspond 
to the negative matter. 

III. Negative Matter and its Main 
Characteristic 

We think, first, the anti-(opposite) matter and the 
negative matter should be distinguished exactly. The 
anti-matter is that some properties of matter are opposite, 
for instance, charge, baryon number, lepton number, 
strangeness number and so on, but their masses and total 
energy are still positive. These particles include positron 
and various anti-particles. The existence of these 
particles is already verified. Both positive and opposite 
matters meet to annihilate to photons or mesons with 
conservation of energy and zero-charge. The negative 
matter has a negative mass and total energy. Its main 
characteristic should be the universal gravitation each 
other, but is the universal repulsion with all positive 
matter. Therefore, the creation of negative matter is 
difficult, but its existence should be also stable. In 
general case both of positive and negative matters are 
two regions of topological separation by different 
interactions. When the positive and negative matters with 
the same mass meet, they will become a real vacuum. 

But, so far their existence on the experiment is not final 
conclusion. Theoretically, in the negative matter there is 
also negative anti-matter with opposite charge and so on, 
but with negative mass [15]-[17]. 

We should extend the Dirac theory, and assume that 
Dirac sea is in fact a negative matter, and then the 
anti-particle is only a hole in Dirac sea. Because positive 
and negative matters are repulsive forces, these holes are 
stable. Such Dirac sea and its hole theory hold generally 
for various particles. 

The Dirac equations of fermions can describe 
anti-matter. The cosmological constant Λ  describes 
possibly the negative matter, which corresponds to the 
Λ  term in the gravitational field equation. In the 
Klein-Gorden equation the 2m  term may correspond to 
±m, both describe bosons. In the Dirac equations m -m 
may also describe the negative matter. A universal 
relation is: 

 
 2 2 4 2 2E m c c p= +  (1) 
 

It may be generally applied for various positive, 
opposite and negative matters, and for all ± m, ± E and ± 
p. Only in the equations described negative matter the 
mass is negative, while in the equations described 
opposite matter the charge and so on are opposite. For a 
relation: 

 
2

2 2 4 2 qE m c c p A
c

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 

 
i.e.: 

 2 2 41qp A E m c
c c

− = ± −  (2) 

 

 2 2 41 cq mv E m c
c A

⎛ ⎞∴ = −⎜ ⎟
⎝ ⎠

∓  (3) 

 
Such the charge may be positive or negative, and is 

particular distinct for v=0. It corresponds to the opposite 
matter. The negative matter is possibly influence on the 
universal gravitational laws, classical mechanics, the 
motion laws of planet, electrodynamics, general 
relativity, quantum mechanics and so on. In this case the 
light ray is red shift at the neighborhood of a 
gravitational field (positive matter), and is violet shift at 
the neighborhood of a repulsive field (negative matter): 

 
 2/ MG / rcλ λ∆ = −  (4) 
 

Of course, light emitted from the negative matter 
cannot be observed directly. The light ray should have 
repulsive deflection in a field of the negative matter: 
 
 24MG / c Rα = −  (5) 
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and a more general deflection should be: 
 
 ( ) 2

1 24G M M / c Rα = −  (6) 
 
in which 1M  and 2M  are mass of the positive and 
negative matters, respectively. 

For the Kepler laws of planet: 
 

 ( ) ( )1 22
1GF r M M , u
rr

= − − =  (7) 

 
So: 

 ( )
2

1 22
d u Gu M M

Hdϑ
+ = −  (8) 

 
Its solution is: 

 

 
( )

( ) ( )
1 2

0 1 21
H / G M M

r
CH cos / G M Mϑ ϑ

−
=

+ − −
 (9) 

 
when 0 0ϑ = , it becomes a quadric curve: 
 

 
1

pr
ecosϑ

=
+

 (10) 

 
in which ( )1 2e Cp CH / G M M= = − . It is ellipse for 
E<1 and 1 2M M> ; it is hyperbola for E>1 and 

1 2M M< ; it is parabola for E=1 and 1 2M M= . This is 
a modified Kepler first law. The Kepler second law 
should be invariable. 

In the gravitational law: 
 

 1 22
GF m m
r

= −  (11) 

 
there are two masses, but in the Newton second law 
F=ma there is only one mass. In order to keep the 
consistency of natural laws, and a repulsive force 
between positive and negative matters, we should 
suppose -F=-ma, i.e., F=ma hold always for the negative 
matter, so that a is still an acceleration in the negative 
matter, while is always deceleration between the positive 
and negative matters. 

In the special relativity the mass increases still. In the 
four-vector [18] change only is (±mv; ±E/c), the 
time-like interval is -v<-c, i.e., v>c; the space-like 
interval is -v>-c, i.e., v<c, both are just opposite.  

Therefore, the superluminal is in the time-like interval 
[18]. In the general relativity there is similarly curved 
time-space. In the quantum mechanics the negative 
matter may be still E hν= , in which E -E and -h h. 
Such the de Broglie wave length is positive. The 
uncertainty principle: 

 ( ) ( )22 2 4xx p /∆ ∆ ≥ =  (12) 
 
is invariant, but another relation: 
 
 ( )( ) 2xx p /∆ −∆ ≥ −=  (13) 
 
will become probably to: 
 
 ( )( ) 2xx p /∆ ∆ ≤ =  (14) 
 

The Heisenberg equation is also invariant, mass 
becomes an opposite sign in the Schrodinger equation, 
because the energy-momentum operators are invariant. 
Such: 

 

 
( ) ( )

2

2
pE U r

m
− = +

−
 (15) 

 
whose corresponding equation in quantum mechanics is: 
 

 ( )
2

2

2
i U r

t m
ψ ψ ψ∂

= ∇ −
∂

==  (16) 

 
Here only U -U. The Klein-Gordon equation and the 

Dirac equations are invariant. But, an equation in an 
electromagnetic field is different: 

 
 ( ) 2 0E e cp eA cϕ α βµ ψ⎡ ⎤− + − − + + =⎣ ⎦  (17) 

IV. Negative Matter is Possibly the 
Simplest Dark Matter 

A unique dependable method determined all mass is to 
study their gravitation effect, for which the easiest 
method is the measurement of the circular speed curves 
in the galaxy [19]. These curves may be measured from 
the Doppler shift of spectrum [20]. 

The dark matter self does not emit light, and does also 
not interact with light. The negative matter is repulsive 
force for photon, and negative-photon with negative 
energy and negative mass is also repulsive force for 
general matter, both cannot be observed, and show the 
dark matter. The state equation of the dark energy is 
different with the equation of usual matter, and at present 
assume that it is repulsive force each other. So this may 
correspond to the negative matter [15]-[17]. According to 
the mass-energy relation in Einstein's relativity, the dark 
matter and dark energy should be unified. 

Recently, Caldwell proposed phantom as 
cosmological consequences of a dark energy component 
with super-negative equation of state, whose cosmic 
energy density has negative pressure [21]. Then phantom 
becomes an important dark energy model [21]-[25]. 
Hong, et al., considered a higher dimensional gravity 
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theory with a negative kinetic energy phantom field and a 
cosmological constant [22]. Scherrer and Sen examined 
phantom dark energy models produced by a field with a 
negative kinetic term [23]. Chimento, et al., discussed the 
dark energy density derived from the 3-scalar phantom 
field, and its negative component plays the role of the 
negative part of a classical Dirac field [24]. Gonzalez, et 
al., presented the full nonlinear study of a phantom scalar 
field accreted into a black hole, which includes that the 
total energy of the space-time is positive or negative 
[25]. The total energy is negative, so it should be namely 
a negative matter. 

The observations for luminous mass find that the 
velocity V is approximately constant, for example, in a 
range of radio 0.5 kpcs<R<20 kpcs for our Galaxy. This 
is an important proof of the existence of the dark matter, 
and which exists in the galactic halo. For a galaxy, if the 
movement of a star round the center of the galaxy obeys 
the Kepler law, and the negative matter is introduced, the 
equation of the star with mass m and distance R to the 
center will be: 

 

 ( ) 2
1 22

Gm mM M V
RR

− =  (18) 

 
The total mass of this galaxy inside radius R is: 

 

 

( )

( ) ( )

1 2

2

0 0

4
R R

M R M M

r dV r r drρ ρ π

= + =

= =∫ ∫
 (19) 

 

such 
( ) ( )24

dM r
r r

dr
π ρ= . The continuity equation is: 

 

 ( ) 0v
t
ρ ρ∂
+∇ =

∂
 (20) 

 
in which 1 2ρ ρ ρ= +  is a total density. The Euler 
equation is: 
 

 
( ) ( ) ( )

( ) ( )

1 2 1 2

1 2 1 2

dv v v v
dt t

p p

ρ ρ ρ ρ

ρ ρ

∂⎡ ⎤+ = + + ⋅∇ =⎢ ⎥∂⎣ ⎦
= −∇ + − + ∇Φ

 (21) 

 
The cosmological constant corresponds to a fictitious 

fluid introduced, whose density is 8/ Gρ πΛ = Λ , and 

pressure is 2 8p c / GπΛ = −Λ . The mass-to-light ratio 
connects to ( )1 2 1 2 11/ /ρ ρ ρ ρ ρ+ = + , such more is the 
negative matter, and bigger is the mass-to-light ratio. 

From Eq.(18), we may obtain a radial velocity: 
 

 
( )1 2G M M

V
R
−

=  (22) 

of the star, and an angle velocity: 
 

 
( )1 2

3

G M M
R
−

Ω =  (23) 

 
from the movement equation. Such this measurement 
determines only difference of positive mass and negative 
mass, i.e., a breaking part of symmetry between positive 
and negative matters. 

We suppose an isolated particle system with the 
positive and negative matters under gravitational self 
interaction, whose kinetic energy: 
 

 2 2
1 2

1
2 i i j j

i j
T T T m r m r

⎛ ⎞
⎜ ⎟= − = −
⎜ ⎟
⎝ ⎠
∑ ∑� �  (24) 

 
It is simplified to: 

 

 
( )

( )

2
1 2

2
1 2

1
2
3
2 saw

T M M V

M M V

= − < >=

= − < >
 (25) 

 
For an object of spherical symmetry the potential 

energy is: 
 

 
( )

( )

2
1 2

2 2
1 2 1 22

GU M M
R
G M M M M
R

= − − =

= − + −
 (26) 

 
Applied the virial theorem determined the mass of 

cluster of galaxies, the sum of kinetic energy T and 
potential energy U for this system is: 

 

 
2

2 2
2

12 0
2 i i j j

i j

dT U m r m r
dt

⎛ ⎞
⎜ ⎟+ = − =
⎜ ⎟
⎝ ⎠
∑ ∑  (27) 

 
The kinetic energy of entire system in each particle as 

a galaxy is namely T. By above formula the mass of this 
galaxy becomes: 

 

 2
1 2

3
saw

RM M V
G

− = < >  (28) 

 
Therefore, the existence of the negative matter will 

derive bigger decrease of mass by this way. For example, 
assume that the positive matter and negative matter are 
55% and 45% of total mass, respectively. We observed 
mass that is only its 10%. Such the negative matter is 
possibly an important reason produced an effect of the 
dark matter. 

The field equations of general relativity on the 
negative matter are: 



 
Yi-Fang Chang 

Copyright © 2011 Praise Worthy Prize S.r.l. - All rights reserved                                 International Review of Physics, Vol. 5, N. 6 

344 

 ( )8G k T T 'µν µν µνπ= −  (29) 

 
i.e.: 
 8 8G kT ' kT G gµν µν µν µν µνπ π+ = = + Λ  (30) 
 
so Λ  corresponds to the negative matter. And: 
 

 ( ) ( )2

8 kT ' / g

' p'/ c u u / g p'

µν µν

µ ν µν

π

ρ

Λ = =

⎡ ⎤= + −⎣ ⎦
 (31) 

 
On the other hand, the gravitational field equation 

with the cosmological constant is extended to: 
 

 ( )8 8G kT k T gµν µν µν µνπ π= ⇒ +Λ  (32) 
 

Here gµνΛ  corresponds to the negative energy state 
and vacuum energy, i.e., Dirac sea. The Friedmann 
equation is: 
 

 ( ) ( ) ( ) ( )2
1 2 1 2

4 3
3

R t G p p / c R tπ ρ ρ⎡ ⎤= − − + −⎣ ⎦
�� (33) 

 

in which ( ) ( ) 2
1 2 1 23 p p / cρ ρ− + −  is effective mass 

density: 
 

 ( )2 2
1 2

8 2
3

R G R Cπ ρ ρ− − =�  (34) 

 
in which ( )0 0R t H=�  is the Hubble constant. The 
density parameter is: 
 

 0 0
0 0 1 22

0

8
3 c

G
,

H
π ρ ρ

ρ ρ ρ
ρ

Ω = = = −  (35) 

 
is an observed density. The accelerating expansion of the 
universe shows: 
 

( ) ( ) 2
1 2 1 23 p p / cρ ρ− + − <0 

 
i.e.: 
 ( ) ( )2 2

2 2 1 13 3p / c p / cρ ρ+ > +  (36) 

 
The negative matter is more than the positive matter. 
For the negative matter there should also have the 

corresponding black hole, whose radius is: 
 

 22r Gm / c= −  (37) 
 

Various positive matter and black hole exhibit the 
gravitational lensing effect. While the negative matter 
and negative black hole will be the repulsive lensing 
phenomena. Both should be different in observations. 

Moreover, we proposed that in quantum fluctuations 
the positive matter and negative matter are created at the 
same time, and derive an inflation cosmos. This 
corresponds to the cosmological mode created from 
nothing to all things. It may form the parallel worlds, or 
the many-worlds, or multiverse, etc. The Higgs 
mechanism is possibly a product of positive and negative 
matter [15]. 

V. Theoretical Test and the Basic Laws  
of Negative Matter 

The existence of dark matter should affect some 
results of the Newtonian gravitation and the general 
relativity, for example, the cosmic average density will 
increase about 20 times. The dark matter is very 
complex, perhaps, the negative matter is only the 
simplest dark matter. 

In the large-scale space, if there has a negative matter 
cluster in the positive matter, a part of positive matter 
will be screened, and another visible matter changes 
shape by the repulsive lens. Therefore, the visible matter 
looks much less. The negative matter and their screening 
positive matter will exhibit the invisible dark matter. 
According to this hypothesis, since the screening part 
and distorted part are different, the star-shape observed 
will be a little different from different positions of the 
Earth at the solar system. This season effect may be 
tested. 

Further, the negative matter can predict: 1). There is 
repulsive force between positive and negative matters, 
and which obey the square inverse ratio law according to 
the Newtonian law. 2). General photons are reflected by 
negative matter, which exhibits a type of dark matter. 
3).The dark matter includes the negative matter and the 
positive matter screened. 4). When the move speed 
between positive and negative matter is very big, and the 
kinetic energy is bigger than the potential energy, their 
colliding result will be a complete annihilation, whose 
leftover is only a mass-difference of positive and 
negative matters. 5). Usual light under interaction of 
negative matter is repulsive deflection, so it shows the 
repulsive lensing effect. 6). The negative matter is similar 
with invisible black hole, but is repulsive force for 
matter, and its mass is invariant. 7). The negative matter 
may represent the cosmic repulsion and the fast 
expansion. 8). The positive and negative matters under 
some exceeding conditions may be created from nothing 
at the same time. These will also be main tests of the 
existence of negative matter. 

The negative matter as the simplest candidate of dark 
matter can explain some characteristics of a huge lack of 
mass on dark matter, and of a repulsive force of the dark 
energy. The negative matter determinates the 
cosmological constant, and changes possibly the 
gravitational lensing effect, and is consistent with the 
conformal gravity theory [26], and with the observation 
of the bullet galaxy cluster [9]. The latter shows 
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obviously a huge dissimilarity between the positive and 
negative matters. In this case two galaxies collide sharply 
and meet, but the negative and positive matters are 
repulsive each other, so the negative matter passes very 
quickly. Mortonson, et al., proposed the testable dark 
energy predictions from current data [27]. 

The above discussions are based on a basic axiom: the 
no-contradiction of natural laws, and on the two 
foundational principles: 
1. The negative matter obeys the same natural laws of 

usual matter, including classical, relativistic and 
quantum physics. 

2. There is universal repulsive force between the positive 
and negative matter. Of course, some concrete laws 
are possibly different, for example, the Kepler first 
law and so on. 

Usually, one considers that Dirac predicted the 
opposite matter. In fact, the Dirac theory implied already 
the negative matter, which should be also a necessary 
development of this theory and the Dirac's negative 
energy state.  

Finally, we propose particularly the three basic laws 
or principles of the negative matter: 
I.  The classical law. The negative matter is repulsive 

with the positive matter, and obeys the Lorentz 
transformation, etc. 

II. The quantum law. For the fermions of the positive 
and negative matter, and corresponding Dirac 
equations and so on, both masses are opposite; while 
for the bosons of the positive and negative matter, 
and corresponding the Klein-Gordon equation and so 
on, both 2m  are the same.  

III. The symmetry (completeness) law. Dirac pointed out: 
The physical laws are symmetrical between the 
positive and negative charge [13]. Further, the 
physical laws should be also symmetrical between the 
positive and negative matter. It will form the most 
perfect symmetrical world for four matters on 
positive, opposite, and negative, negative-opposite 
particles. If the negative matter is verified, a new and 
complete world will be exhibited. 
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Effect of Initial Stress on Wave Propagation 
in an Infinite Micropolar Elastic Solid Body 

 
 

E. Edfawy 

 

Abstract – In this paper we investigated generation waves in an infinite micropolar elastic 
medium under the influence of initial stress p and body forces Ԧܺ. The equation of motion have 
been solved by applying the Fourier-Hankel transform. The components of displacement, the 
stress, the rotation and the couple stress have been obtained in analytical form as integrals 
involving Bessel function of first kind and of order zero. Copyright © 2011 Praise Worthy Prize 
S.r.l. - All rights reserved. 
 
Keywords: Wave Propagation, Elasticity, Initial Stress, Micropolar, Hankel’s Transform 
 
 

I. Introduction 
The analysis of vibrating cylinders has a very rich 

history in the field of solid mechanics. The dynamic 
problems of elastic bodies is an important and interesting 
research field for engineers and scientists. However, little 
attention has been given to the problem of the wave 
propagation in orthotropic circular cylinder. Abd-Alla 
and Mahmoud [1]-[2], investigated Magneto-
thermoelastic problem in rotating non-homogeneous 
orthotropic hollow cylindrical under the hyperbolic heat 
conduction model and the effect of the rotation on 
propagation of thermoelastic waves in a non-
homogeneous infinite cylinder of isotropic material. 
Abd-Alla, et al. [3]-[4], studied wave propagation 
modeling in cylindrical human longe wet bones with 
cavity and the effect of the rotation on the radial 
vibrations in a non-homogeneous orthotropic hollow 
cylinder. 

Mahmoud [5]-[6], investigated wave propagation in 
cylindrical poroelastic dry bones and the effect of the 
non-homogeneity on wave propagation on orthotropic 
elastic media. 

Abd-Alla, et al. [7], investigated the effect of the non-
homogeneity on the composite infinite cylinder of 
isotropic and orthotropic materials. Some problems of 
the three-dimensional elastic theory for the axisymmetric 
free vibrations of hollow circular cylinders were studied 
and analyzed by Hutchinson and El-Azhary [8]. Abd-
Alla and Farhan [9], investigated the effect of the non-
homogeneity on the composite infinite cylinder of 
orthotropic materials. Wang and Shen [10], studied the 
two-dimensional problem of inclusions of arbitrary shape 
in magneto-electro-elastic composites. Cowin and Fraldi 
[11], investigated a dynamic problem of singularities 
associated with the curvilinear anisotropic elastic 
symmetries. 

Ebenezer, et al. [12], investigated forced vibration of 
solid elastic cylinders.  

Ding, et al. [13], Hou and Leung [14], obtained the 
analytical solution for the axisymmetric plane strain 
electro elastic dynamics of a non-homogeneous 
piezoelectric hollow cylinder. Hutchinson [15], 
investigated the free vibration problems of solid cylinder. 
Also, Markus and Mead, [16], presented an analytical 
method for investigating the dispersion behavior of 
axisymmetric and a symmetric wave motion in 
orthotropic cylinders. Chen, et al. [17]-[18], investigated 
the free vibration and general solution of 
nonhomogeneous transversely isotropic magneto-electro-
elastic hollow cylinders. Sharma and Kumar [19], 
investigated asymptotic of wave motion in transversely 
isotropic plates. Toudeshky, et al. [20], studied sound 
transmission into a thick hollow cylinder with the fixed 
and boundary condition. Buchanan [21], investigated free 
vibration of an infinite magneto-elactro-elastic cylinder. 
Senitskii [22], studied stress state of a rotating 
inhomogeneous anisotropic cylinder of variable density.  

The frequency equation for the plane vibration studied 
by Erguven [23]. Elnaggar and Abd-Alla [24] 
investigated thermoelastic problem in an infinite cylinder 
under initial stress, But they all considered initially stress 
free media. Besides the earth, many structural bodies are 
found to initially stressed. It is of practical importance to 
study the effect of the initial stresses on the waves 
propagated in these bodies. 

The present investigation is concerned with the 
determination the displacement, the stress, the rotation 
and couple stress components in an infinite micropolar 
elastic medium under the effect of action of body forces 
and initial stress.  

The problem is treated on the basis of the classical 
linear theory of micro elasticity throughout the analysis 
is supposed to be homogeneous, isotropic with respect to 
all physical properties. The wave equations of motion 
have been solved applying the Fourier-Hankel transform. 
The final results, the displacement, the stress, the 
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rotation, and the couple stress under the effect of action 
initial stress and body forces have been obtained in 
analytical form as integrals involving Bessel function of 
first kind and of order zero.  

II. Formulation of the Problem  
Let consider a homogeneous and isotropic micropolar 

elastic an infinite cylinder under initial stress p and body 
forces Ԧܺ. The field of displacements ݑሬԦ and rotations ݓሬሬԦ is 
characterized by the symmetry with respect to z-axis.  

The dynamic equations of motion under the effect of 
body forces and initial stress can be written as [1], [2]: 

 
ሺߤ ൅ ߙ  ൅ ሬԦݑଶߘሻ ݌ ൅  ሺ ߣ ൅ ߤ െ ߘሺ ߘሻߙ  · ሬԦ ሻݑ ൅

 ൅2ݓ   ݈ݎݑܿ ߙሬሬԦ െ ݈ݎݑܿ  ߩ ሬሬԦݓ ൅  Ԧܺ ൌ  ߩ
డమ௨
డ௧మ    

(1)

 
ሺ ܨ ൅ ሬሬሬԦ ݑଶߘሻ ߝ  ൅ ሺ ܨ ൅ ߚ  െ ߝ  ሻ ߘ ሺ ߘ · ሬሬԦሻݓ െ ߙ 4 ሬሬԦݓ ൅

൅ 2 ݑ ݈ݎݑܿ ߙሬԦ ൌ  ܫ
డమ௨
డ௧మ   

(2)

 
where ݑሬԦ is the displacement vector, ݓሬሬԦ is the rotation 
vector, Ԧܺ is the vector of body forces ߤ , ,  ߣ , ߙ ,  ߚ , ܨ    ߝ
are the natural constants.  

If we refer the medium to cylindrical polar coordinates 
ሺ ݎ ,Φ  ,  ሻ and assume the independent of all causes and ݖ
effects of the angle Φ , then equation (1) and (2) become: 

 

ሺߤ ൅ ߙ  ൅ ௥ݑଶߘሻሺ݌ െ 
௥ݑ

ଶሻݎ ൅ ሺ ߣ ൅ ߤ ൅ ݌ െ ሻߙ
߲݁
ݎ߲ ൅

െ 2ߙ  
߲߱ః

ݎ߲ ൅  ݌ 
߲߱ః

ݖ߲ ൅ ܺ௥ ൌ  ߩ 
߲ଶݑ௥

ଶݐ߲  
  

ሺߤ ൅ ௭ݑଶߘሻ ߙ  ൅ ሺ ߣ ൅ ߤ  െ  ሻߙ 
߲݁
ݖ߲ ൅ 

ߙ2
ݎ   

߲
ݎ߲  ሺ ߱ݎఃሻ

൅  

൅
݌
ݎ  

߲
ఃሻ߱ݎ ሺ ݎ߲ ൅ ܺ௭ ൌ  ߩ

߲ଶݑ௭

ଶݐ߲  
 

(3)

 
ሺ ܨ ൅ ሻ ߝ  ቀ ߘଶ߱ః െ

߱ః

ଶݎ  ቁ െ ః߱ߙ 4  ൅ 

 ൅2 ߙ ൬ 
௥ݑ߲

ݖ߲ ൅ െ 
௭ݑ߲

ݎ߲ ൰ ൌ  ܫ 
߲ଶ߱ః

ଶݐ߲  
 

ሺ ܨ ൅ ሻ ߝ  ቀ ߘଶ߱௥ െ
߱௥

ଶݎ  ቁ െ ௥߱ߙ 4 ൅ 

൅ሺߚ ൅ ܨ െ  ሻ ߝ 
ݏ߲
ݎ߲ െ ߙ2

ఃݑ߲

ݖ߲  ൌ  ܫ 
߲ଶ߱௥

ଶݐ߲  
 

ሺ ܨ ൅ ଶ߱௭ߘ ሻ ߝ  െ ௭߱ߙ 4  ൅ 

൅ሺ ߚ ൅ ܨ െ  ሻ ߝ 
ݏ߲
ݖ߲ ൅ 

ߙ2
ݎ   

߲
ఃሻݑݎ ሺ ݎ߲ ൌ  ܫ 

߲ଶ߱௭

ଶݐ߲  
 

ሺߙ ൅ ሻߤ  ቂ ߘଶݑః െ
ఃݑ

ଶݎ  ቃ ൅  ൬ ߙ 2 
߲߱௥

ݖ߲ െ
߲߱௭

ݎ߲ ൰ ൌ

ൌ  ߩ
߲ଶݑ௭

ଶݐ߲ െ ߕః 

(4)

where: 
 

ሬԦݑ ൌ ሺ ݑ௥ , , ఃݑ , ௭ ሻݑ ሬ߱ሬԦ ൌ ሺ߱௥ , ߱ః , ߱௭ ሻ, 
Ԧߕ  ൌ ሺ ߕ௥ , , ఃߕ   ௭ ሻߕ

݁ ൌ  
1
ݎ  

߲
௥ሻݑݎሺ ݎ߲ ൅ 

௭ݑ߲

ݖ߲ ݏ          ൌ
1
ݎ  

߲
௥ሻ߱ݎሺ ݎ߲ ൅ 

߲߱௭

ݖ߲   
 

Using Helmholz's theorem [5] and introducting the 
potential ߔ , ሬ߰Ԧ   ܽ݊݀ ߁Ԧ  by the equations:  
 

௥ݑ ൌ
ߔ߲
ݎ߲ ൅  

߲ଶ߰
      ݖ߲ݎ߲

௭ݑ  ൌ  
ߔ߲
ݖ߲ െ

1
ݎ  

߲
ݎ߲  ൬ݎ

߲߰
ݎ߲  ൰ 

߱ః ൌ െ
߁߲
ݎ߲      

(5)

 
while the body forces will be decomposed into the 
potential and solenoidal parts: 

 

௥ߕ ൌ ߩ ൬
ߠ߲
ݎ߲ െ

߲߰ః

ݖ߲  ൰  

௭ߕ ൌ ߩ ൭
ߠ߲
ݖ߲ ൅

1
ݎ  

߲
ݎ߲  ሺ ߰ݎఃሻ൱ 

(6)

 
Substituting equations (5) and (6) into equations (3) 

we obtain the following system of wave equations:  
 

ߔଶߘ െ
ߩ

ሺߣ ൅ ߤ2 ൅ ሻߩ
߲ଶߔ
ଶݐ߲ ൅  

ߠߩ
ሺߣ ൅ ߤ2 ൅ ሻߩ ൌ 0 (7)

 

ߔଶߘ െ
ߩ

ሺߣ ൅ ሻߤ2
߲ଶߔ
ଶݐ߲ ൅  

ߠߩ
ሺߣ ൅ ሻߤ2 ൌ 0 (8)

 

െ
߲

ݎ߲ ቎ ଶ߰ߘ െ
ߩ

ቀߤ െ ߩ
2ቁ

 
߲ଶ߰
ଶݐ߲ ൅ ቏߁ܣ  ൅ 

൅
ߩ

ቀߤ െ ߩ
2ቁ

 ߰ః ൌ 0 
(9)

 

െ
߲

ݎ߲ ቎ߘଶ߰ െ
ߩ

ቀߤ െ ߩ
2ቁ

 
߲ଶ߰
ଶݐ߲ ൅ ቏߁ܣ  ൅ 

൅
ߩ

ቀߤ ൅ ߩ
2ቁ

߰ః ൌ 0 
(10)

 

െ
߲

ݎ߲ ቈቆ ଶߘ െ
1
ܿସ

ଶ
߲ଶ߰
ଶݐ߲ െ ଶቇߥ  ߁  െ ଶ߰ ቉ߘܤ ൌ 0 (11)

 
where:  

ܣ ൌ  
 ߙ2

൅ ߤ ߙ   ܤ              ൌ  
 ߙ2

൅ ܨ    ߝ  

ଶߥ  ൌ  
 ߙ4

൅ ܨ ߝ                   ܿସ ൌ ൬
൅ ܨ ߝ  

ܫ  ൰
ଵ
ଶ

 
 
In the absence of initial stress equations (7)-(10) 

reduce to three equations only. We shall consider 
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compressional and distortional waves along the r-axis 
only. These waves are represented by equations (7), (9), 
and (11). Also, Using Helmholz's theorem [5] in 
equations (4) and introducing the potential 
, `ߔ ߰` and ߗ , we obtain : 

 

߱௥ ൌ  
`ߔ߲
ݎ߲ ൅

߲ଶ߰`
௭ ൌ߱   , ݖ߲ݎ߲

`ߔ߲
ݖ߲   െ  

1
ݎ   

߲
ݎ߲  ൬ ݎ

߲߰`
ݎ߲ ൰ 

ఃݑ ൌ െ  
ߗ߲
ݎ߲  

(12)

 
Substituting equations (12) into equations (4) we 

obtain the following system of wave equations:  
 

ቆ ߘଶ  െ ߥ଴
ଶ െ 

1
ܿଷ

ଶ  
߲ଶ

ଶቇݐ߲ ൌ `ߔ     0   

െ
߲

ݎ߲ ሾ  ሺߘଶ – ߥ଴
ଶ െ 

1
ܿସ

ଶ  
߲ଶ

`߰ ଶሻݐ߲ ൅ ሿ ߗܤ ൌ 0  

െ
߲

ݎ߲ ቎ሺߘଶ   ൅  
ߩ

ቀߤ െ ߩ
2ቁ

 
߲ଶ

ߗ ଶሻݐ߲ െ ଶ߰`቏ߘܣ  ൅ 

൅
1

ቀߤ െ ߩ
2ቁ

ఃߕ ൌ    0 

(13)

 
where:  

ܿଷ ൌ ሺ
ߚ ൅ 2F

I ሻ
ଵ
ଶ      , ଴ߥ

ଶ ൌ  
ߙ4

2F ൅  ߚ 
 

We shall give the general solution of wave equations 
(7), (9) and (11) reccurring to Fourier-Hankel integral 
transformations.  

III. Solution of Wave Equations 
Applying the Fourier-Hankel integral transformation: 
 

, ߟ ෡ ሺߔ , ߦ ߱ሻ  ൌ 

ൌ  
1

ߨ2 ඵ ݁௜ሺ క௭ା ௪௧ሻ

ஶ

ିஶ

න ݐ݀ݖ݀  , ݎ ሺߔሻݎߟ଴ሺܬ ݎ , ݖ  ݎሻ݀ ݐ
ஶ

଴
, ݎ ሺߔ , ݖ ሻ ݐ  ൌ 

ൌ
1

ߨ2 ඵ ݁ି௜ሺ క௭ା ௪௧ሻ

ஶ

ିஶ

ݐ݀ݖ݀ න ݎ , ߟ ෡ ሺߔሻݎߟ଴ሺܬ , ߦ ߱ሻ݀ߟ
ஶ

଴

(14)

 
to equations (7), (9) and (11), we obtain a system of 
algebraic equations. The solution of this system gives the 
transforms ߔ෡  , ෠߰  ,  :෠߁
 

෡ߔ ൌ  
෠ߠߩ

ሺߣ ൅ ߤ2 ൅ ଶݒሻሺߩ െ ଵߜ
ଶሻ

 

෠߰ ൌ
1

∆ߟ ቎ 
ଶݒሺሺߩ ൅ ଶߥ െ ସߜ

ଶሻ ෠߰ః

ߤ െ ߩ
2

቏ 

෠߁ ൌ
1

 ቎ ∆ߟ
 ః߰ݏଶݒߩ

ሺߤ െ ߩ
2ሻ

቏    

(15)

where: 
 

ଶݒ ൌ ଶߦ   ൅ ߟଶ    ,   ߂ ൌ ሺ ݒଶ െ ߣଵ
ଶሻሺ ݒଶ െ ߣଶ

ଶ ሻ ,     

ଵ,ଶߣ
ଶ ൌ  

1
2 ሾ ሺ ߜଶ

ଶ ൅ ߦଶ െ ݒଶሻ  ט

ଶߜ ሾ ሺט
ଶ ൅ ߦଶ െ ݒଶሻଶ ൅ 4ߜଶ

ଶߦଶሿ
ଵ
ଶ ,  

ଶߦ ൌ  
ଶߙ4

ሺߙ ൅ ܨሻሺߤ  ൅       ሻߝ 

ଶߜ   ൌ  ሺ ݓ
ߩ

ቀߤ െ ߩ
2ቁ

ሻ
ଵ
ଶ   , ସߜ ൌ  

ݓ
ܿସ

  

 
Let us perform the Fourior-Hankel integral 

transformation on the relations (5) and (6), we assume 
that: 
 

൫ݑො௥, ෠௥ߕ , ෠߰ః൯ ൌ
1

ߨ2 ඵ ݁௜ሺ క௭ା ௪௧ሻ

ஶ

ିஶ

ݐ݀ݖ݀ · 

· න ሻݎߟ଴ሺܬ ݎ · , ߟ ෡ ሺߔ  , ߦ ߱ሻ݀ߟ 
ஶ

଴

· 

· ሺݑ௥, ,௥ߕ ߰ఃሻ݀ݎ൫ߠ෠ , ෠௭൯ߕ ൌ 

ൌ  
1

ඵ ߨ2 ݁௜ሺ క௭ା ௪௧ሻ

∞

ିஶ

ݐ݀ݖ݀  · 

· න ݎ ሻݎߟ଴ሺܬ · ሺߠ ,  ݎ௭ ሻ݀ߕ
∞

଴

            

(16)

 
under these assumption we get:  
 

ො௥ݑ ൌ െ ෡ߔߟ ൅ ߟߦ݅ ෠߰ , ො௭ݑ ൌ െ݅ߔߦ෡ ൅ ଶߟ  ෠߰ ,
ෝ߱ః ൌ  ෠߁ߟ 

(17)
 

௥ߕ ൌ െ ෠ߠߟߩ ൅ ߦߩ݅ ෠߰ః , ௭ߕ ൌ െ ݅ߠߦߩ෠ ൅ ߟߩ  ෠߰ః  (18)
 

From the relation (18) we have: 
 

෠ߠ ൌ
1

ଶߥߩ ൫݅ߕߦ෠௭ െ  ,  ෠௥൯ߕߟ

෠߰ః ൌ
1

ଶߥߩ ሺߕߟ෠௭ െ  ෠௥ሻߕߦ݅
(19)

 
Substituting from equations (15) and (19) into 

equations (17) we obtain the transforms of the quantities 
,  ௥ݑ , ௥ߕ ௭  expressed by the transformsݑ  .   ௭ߕ

Performing the inverse Fourier - Hankel 
transformation we obtain finally:  

 

௥ݑ ൌ
1

ߨ2 ඵ ݁ି௜ሺ క௭ା ௪௧ሻ

∞

ିஶ

ݓ݀ߦ݀  · 

· න ሻሾݎߟଵሺܬ
෠௭ߕߦ൫݅ߟ െ ෠௭൯ߕߟ

ሺߣ ൅ ߤ2 ൅ ଶݒሻሺߩ െ ߜଵ
ଶሻݒଶ ൅  

∞

଴

 

െ
ߦ݅
߂ ቎

ሺݒଶ ൅ ଶݒ െ ସߜ
ଶሻ

ቀߤ െ ߩ
2ቁ ଶݒ

൫ ߕߟ෠௭ െ  ߟ݀ ෠௥൯቏ሿߕߦ݅

(20)



 
E. Edfawy 

Copyright © 2011 Praise Worthy Prize S.r.l. - All rights reserved                                                                 International Review of Physics, Vol. 5, N. 6 

349 

௭ݑ ൌ  െ
1

ඵ ߨ2 ݁ି௜ሺ క௭ା ௪௧ሻ

∞

ିஶ

 · ݓ݀ߦ݀ 

· න ሻሾݎߟ଴ሺܬݎ
෠௭ߕߦ൫݅ߦ݅ െ ෠௭൯ߕߟ

ሺߣ ൅ ߤ2 ൅ ଶݒଶሺݒሻߩ െ ߜଵ
ଶሻ ൅ 

∞

଴

 

െ
ߟ
 ቎ ߂

ሺݒଶ ൅ ଶݒ െ ସߜ 
ଶሻ൫ ෠௭ߕߟ െ ෠௥൯ߕߦ݅

ቀߤ െ ߩ
2ቁ ଶݒ

 ቏ሿ 

(21)

 

ωΦ  ൌ  
1

ඵ ߨ2 ݁ି௜ሺ క௭ା ௪௧ሻ

∞

ି∞

 ݓ݀ߦ݀ 

න
ሻݎߟଵሺܬߟ

∆
ሾ
Χ෡୸ߟ൫ݏ െ Χ෡୸൯ߦ݅

ቀߤ െ ߩ
2ቁ

ሿ ݀ߟ 
∞

଴

 
(22)

 
Knowing the displacement and rotations we are able 

to determine the components of the tensor of stresses ߬௜௝ 
under initial stress p and the tensor of couple stresses ߤ௜௝ 
from the formula [2] as below:  

 

߬௥௥ ൌ  ሺߣ ൅ ߤ2 ൅ ሻ݌
௥ݑ߲

ݎ߲ ൅ ሺߣ ൅ ሻ݌
௥ݑ

ݎ ൅ 

            ൅ ሺߣ ൅ ሻ݌ డ௨೥
డ௭

 

߬ఃః ൌ  ሺߣ ൅ ߤ2 ൅ ሻ݌ ௨ೝ
௥

൅ ሺߣ ൅ ሻߩ డ௨೥
డ௥

൅

             ൅ሺߣ ൅ ሻ݌ డఓ೥
డ௭

൅ ሺߣ ൅ ሻ݌ డ௨೥
డ௭

  

߬௭௭ ൌ  ሺߣ ൅ ሻߤ2
௭ݑ߲

ݖ߲ ൅ ߣ 
௥ݑ

ݎ ൅ ߣ
௥ݑ߲

ݎ߲   

߬௥௭ ൌ ߤ  ൬
௭ݑ߲

ݎ߲ ൅ 
௥ݑ߲

ݖ߲  ൰ – ߙ  ൬
௥ݑ߲

ݖ߲ െ
௭ݑ߲

ݎ߲  ൰ ൅   ః߱ߙ2 

߬௭௥ ൌ ߤ  ൬
௭ݑ߲

ݎ߲ ൅ 
௥ݑ߲

ݖ߲  ൰ ൅ ߙ  ൬
௥ݑ߲

ݖ߲ െ
௭ݑ߲

ݎ߲  ൰ ൅ ః߱ߙ2 

௥ఃߤ ൌ ൬ ܨ
߲߱ః

ݎ߲ െ
߱ః

ݎ  ൰ ൅ ൬
߲߱ః

ݎ߲ ൅
߱ః

ݎ ൰  

ః௥ߤ ൌ ൬ ܨ
߲߱ః

ݎ߲ െ
߱ః

ݎ  ൰ – ൬
߲߱ః

ݎ߲ ൅
߱ః

ݎ ൰ 

ః௭ߤ ൌ ሺܨ െ ሻߝ 
߲߱ః

ݖ߲       

௭ఃߤ ൌ ሺܨ ൅ ሻߝ 
߲߱ః

ݖ߲  

(23)

 
Let us now consider a particular case ሺ ߙ ൌ 0 ሻ where 

the equations (1) and (2) become independent of each 
other and when there is no initial stress P, then from 
equations (20) – (22) we have :  

 
௥ݑ  

ൌ  
1

ߣሺߨ2 ൅ ሻ ඵߤ2 ݁ି௜ሺ క௭ା ఠ௧ሻ

∞

ିஶ

න  ߦ݀߱݀  ሻݎߟଵሺܬ ߟ · 
∞

଴

· ൦ 
൬ ߟଶ ൅ ߜଶߦଶ െ ଶ߱ߩ

ߤ ൰ ෠௥ߕ ൅ ଶߜሺߟߦ݅  െ 1ሻߕ෠௭

൬ݒଶ െ ଶ߱ߩ

ߣ ൅ ൰ߤ2  ൬ ଶݒ െ ଶ߱ߩ

ߤ  ൰
 ൪ ߟ݀

(24)

 

௭ݑ

ൌ  
1

ߣሺߨ2 ൅ ሻ ඵߤ2 ݁ି௜ሺ క௭ା ఠ௧ሻ

∞

ିஶ

න  ߦ݀߱݀  ሻݎߟ଴ሺܬ ߟ · 
∞

଴

· ൦
൬ ߦଶ ൅ ߟଶߜଶ െ ଶ߱ߩ

ߤ ൰ ෠௭ߕ ൅ ଶߜሺߟߦ݅  െ 1ሻߕ෠௥

൬ݒଶ െ ଶ߱ߩ

ߣ ൅ ൰ߤ2 ൬ ݒଶ െ ଶ߱ߩ

ߤ  ൰
൪  ߟ݀

(25)

 
߱ః ൌ 0  (26)

 
where: 
 

ߜ ൌ  
ߣ ൅ ߤ2

ߤ  

 
The formula (24)-(25) which is similar to that which 

has been obtained by Elnaggar and Abd-Alla [6].  
Let us now consider the system of wave equations 

(13). 
Performing on these equations the integral 

transformation and taking into account that: 
 

൫ߔ෡`, ෠߰` , ෠൯ߗ ൌ
1

ߨ2 ඵ ݁௜ሺ క௭ା ௪௧ሻ

∞

ିஶ

ݐ݀ݖ݀ · 

· න , `ߔ ሻ  ሺݎߟ଴ሺܬ ݎ ߰` , ,ߟሻ݀ߗ
 

∞

଴

 

෠ఃߕ ൌ
1

ߨ2 ඵ ݁௜ሺ క௭ା ௪௧ሻ

∞

ିஶ

ݐ݀ݖ݀ න ݎః݀ߕ ሻݎߟଵሺܬ ݎ
∞

଴

 

(27)

 
we arrive at the following quantities: 
 

`෡ߔ ൌ 0 , ෠߰` ൌ  
1

߂ߟ ቌ 
ఃߕܵ

ߤ െ ߩ
2

ቍ 

෠ߗ ൌ
1

߂ߟ ቌ
ሺ ݒଶ ൅ ଶݒ  െ ସߜ 

ଶሻߕ෠ః

ߤ െ ߩ
2

ቍ          

(28)

                                                                
Let us perform also the Fourier-Hankel transformation 

on the relation (12) we get: 
 

ෝ߱௥ ൌ െ `Φ෡ߟ ൅ Ηߦ݅ ෠߰` 
߱௭ ൌ `Φ෡ߦ݅ ൅ Ηଶ ෠߰`    , Φݑ  ൌ െ ΗΩ෡  

(29)

         
Substituting equations (28) into equations (29), we obtain 
the transforms ෝ߱௥ , ෝ߱௭  ,   ොΦ performing now the inverseݑ
Fourier-Hankel tranformation, we get: 
 

ෝ߱௥ ൌ
1

ߨ2 ඵ ݁ି௜ሺ క௭ା ఠ௧ሻ

∞

ିஶ

 ߦ݀߱݀

න
ሻݎߟଵሺܬߟ ߦ݅

∆ ቎
෠ఃߕݏ

ߤ െ ݌
2

 ቏  ߟ݀ 
∞

଴

  

(30)
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߱௭ ൌ  
1

ඵ ߨ2 ݁ି௜ሺ క௭ା ఠ௧ሻ

∞

ିஶ

 ߦ݀߱݀

න
 ሻݎߟ଴ሺܬଶߟ

∆  ቎ 
෠ఃߕݏ

ߤ െ ݌
2

 ቏ ߟ݀ 
∞

଴

 

(31)

 

ఃݑ ൌ
1

ඵ ߨ2 ݁ି௜ሺ క௭ା ఠ௧ሻ

∞

ିஶ

 ߦ݀߱݀

න
 ሻݎߟଵሺܬߟ

∆  ቎ 
ሺ ݒଶ ൅ ݒ଴

ଶ െ ߜସ
ଶሻߕః

ߤ െ ݌
2

቏ ߟ݀ 
∞

଴

 

(32)

 
Now, the rotation ߱௥, ߱௭  and the displacement ݑΦ 

being known we can determine the stress ߬௜௝  and the 
couple stresses ߤ௜௝from the formula: 

 

௥௥ߤ ൌ  ܨ2
߲߱௥

ݎ߲ ൅ ,   ݏߚ  ఃఃߤ ൌ  ܨ2 
߱௥

ݎ ൅ ݏߚ   

௭௭ߤ  ൌ  ܨ2
߲߱௭

ݖ߲ ൅  ݏߚ 

௭௥ߤ ൌ ൬ ܨ
߲߱௭

ݎ߲ ൅
߲߱௥

ݖ߲  ൰ ൅ 

െ ൬
߲߱௥

ݖ߲ െ
߲߱௭

ݎ߲  ൰  

߬௥ః ൌ ߤ ൬
ఃݑ߲

ݎ߲ െ
ఃݑ

ݎ  ൰ ൅ 
ߙ
ݎ  

߲
ݎ߲

ሺݑݎఃሻ െ  ௭߱ߙ2 

߬ః௥ ൌ ߤ ൬
ఃݑ߲

ݎ߲ െ
ఃݑ

ݎ  ൰ െ 
ߙ
ݎ  

߲
ݎ߲
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In the particular case, i.e. for  ՜ 0 , we obtain from 

equations (30 - 32): 
 

߱௥ ൌ 0      , ߱௭ ൌ 0 (34)
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where : 

ଶߜ
ଶ ൌ  

ߤ
 ߩ

 
Equation (35) refers to the classical elastic medium 

under initial stress which is similar to that which has 
been obtained by Boiet [2], while the equations (34), 
where in , only the rotations cannot appear.  

Similarly, One can derive the equations describing the 
displacements and rotations in the static problem as well 
as for vibrations changing harmonically in time.  
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Red Shift Band Gap Enhancement of the Nanostructure ZnO100-xAlx 
Thin Films as a Function of Al Concentration 

for Optoelectronic Applications 
 
 

Nada M. Saeed, Manal M. Abdullah, Nathera A. Ali, Baha T. Chied 
 
 
Abstract – Zinc Oxide doped Aluminum (ZnO:Al) is a promising material for electronic and 
optoelectronic applications. In this work, Aluminum doped zinc oxide materials was prepared as 
thin films onto hot substrate temperature at 420°C using chemical spray process technique. The 
precursor thin films (ZnO100-xAlx) are prepared by using aqueous zinc chloride solution and 
solution of AlCl3,6H2O of molar concentration 0.10 M/L using x=3, 6, and 9. 
The crystallographic structures of the prepared films are analyzed using X-ray diffraction; the 
results show that the films are polycrystalline. The general morphology of ZnO:Al films are 
imaged by using Atomic Force Microscope (AFM), it constructed from nanostructure dimensions 
range between 81.7 nm-67.6 nm, it was reduced at increasing the ratio of doping. The 
photoluminescence (PL) spectrum of the prepared films was studied, the sharp peak can be 
referred to the direct energy gap, and there is a red shift in the PL peak at increasing the ratio of 
doping. 
The optical properties of ZnO100-xAlx films are studied using measurement from UV-VIS-NIR 
spectrophotometer at wavelength within the range (200-850) nm. The optical characterization 
shows that the transmittances of the doped films are reduced at increasing the ratio of doping. 
The optical energy gap of ZnO100-xAlx was calculated for direct allowed transition, the value of the 
energy gap also reduced to be 3.1 eV, 3.0.eV, 2.8 eV at x=3, 6, 9 respectively. Copyright © 2011 
Praise Worthy Prize S.r.l. - All rights reserved. 
 
Keywords: Zinc Oxide Doped Al, Thin Film Spray Pyrolysis, Nanostructure ZnO 
 
 

I. Introduction 
Zinc Oxide (ZnO) is semiconductor material; Zinc and 

Oxygen belong to the 2nd and 6th groups of the periodic 
table, respectively. 

This semiconductor is transparent conducting oxide 
(TCO) materials, which have the advantages of low cost, 
low toxicity, and high mechanical and thermal stabilities. 
Also it has several favorable properties such as good 
transparency, high electron mobility, wide band gap of 
3.37 eV at room temperature, strong room-temperature 
luminescence.; those properties are already used in 
emerging applications as transparent electrodes in liquid 
crystal displays. 

Thin films of undoped and doped ZnO are utilized for 
a wide variety of electronic applications, such as surface 
acoustic wave devices and transparent conducting 
electrodes. 

Nanoscale porous structures of ZnO and ZnO:Al with 
high surface area find their application in chemical 
sensors and in energy-saving or heat-protecting windows 
and heat mirrors. Various techniques have been used to 
deposit undoped and doped ZnO films on different 
substrates, including, pulsed laser deposition, sputtering, 
sol-gel process and spray pyrolysis technique [1], [2]. 

M. De La L. Olvera et al, (2000), had studied the 
electrical, structural, morphological and optical 
characteristics of ZnO:Al thin films obtained by chemical 
spray are. They proved the dependence of the resistivity 
on the substrate temperature and the film thickness, the 
growth in the (002) direction was observed in all cases. 
The surface morphology was analyzed by using atomic 
force and scanning electron microscopy (AFM and SEM) 
techniques. High transmittance, 85%, was obtained in all 
cases; the band gap was of the order of 3.35 eV [3]. 

Other researchers, A. A. Ibrahim and A. Ashour, 
(2006), had prepared and studied ZnO/Si heterojunction 
by depositing n-ZnO films doped with aluminium on p-
Si by spray pyrolysis method. Heterojunction solar cells 
were fabricated using the configuration Al/ZnO/Si/In. 
The electrical properties of the heterojunction were 
investigated by means of current– voltage measurements 
in the temperature range 295–375 K. The cells show the 
rectifying behavior characterized by the current–voltage 
(I–V) measurement under a dark condition, while 
photoelectric effects have been exhibited under the 
illumination. As a result, the conversion efficiency of the 
fabricated cell of about 6.6% was obtained [4]. 

In the University of Korea, Jae-Sung Hur et al, (2008), 
had studied the ability of improving solar cells by using 
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transparent conducting as window layers as a function of 
thickness. They used Al-doped ZnO thin as the top or the 
bottom transparent conducting window layer. This study 
examined the efficiency of solar cells as a function of the 
Al-doped ZnO film thickness. A 50-nm-thick intrinsic 
ZnO thin film was deposited by RF magnetron 
sputtering. The fill-factor and the conversion efficiency 
of a solar cell with a 310-nm-thick thin film were 
calculated to be 0.67 and 13.54 %, respectively, from the 
results of the J-V measurements [5]. 

Zinc Oxide doped Aluminum nanostructures are 
promising materials for optoelectronic applications, it 
can be used as window layer in photovoltaic devices 
especially for dye-sensitized solar cells and for electronic 
applications as thin-film transistors and light-emitting 
diodes[6]. 

ZnO is highly transparent, conductive when doped, 
and easily prepared by versatile methods, it has been 
researched as a barrier layer in inorganic thin film solar 
cells to improve device stability, so it has been 
demonstrated to be one of effective materials for 
fabricate the non-inverted polymer solar cells [7]. 

Polymer solar cells have seen remarkable progress in 
recent years and have developed from being a scientific 
curiosity to an emerging technology that can be 
manufactured industrially and demonstrated in real 
applications. Polymer solar cells have been heralded as 
the photovoltaic (PV) technology solving all the 
problems current PV technologies are faced with by 
providing convincing solutions to problems of cost and 
abundance of the materials that constitute them. The 
largest challenges to overcome this far have been the low 
performance and the short operational lifetime [8]-[13].  

Today polymer solar cells are present power 
conversion efficiencies in excess of 8% and estimated 
operational lifetimes in the range of 2–5 years. The 
typical polymer solar cell is a multilayer structure with 
typically five layers stacked on top of each other. The 
active layer responsible for light absorption and 
generation of free charge carriers is typically the middle 
layer sandwiched between two charge selective layers. 
The two outer layers are highly conducting electrodes for 
extraction of the generated electrical current; one of those 
must be transparent. The electron selective layers have 
been combination with very thin wide band gap 
insulators such as LiF and MgF2. recently a new class of 
moderately conducting electron selective layers have 
been explored ;ZnO, TiO2, Nb2O5 [14].  

The objective of the present work was to check 
whether Al could be incorporated by a simple low cost 
technique. 

II. Experimental Details 
ZnO:Al thin films are prepared onto hot glass 

substrates by using chemical spray pyrolysis technique 
using solution of Zinc Chloride (ZnCl2) and AlCl3,6H2O, 
the molar concentration of the spray solution was 0.10 
M/L, the flow rate of solution is 2 ml/Sec. ZnO100-xAlx is 

deposited onto hot substrate temperature using x=3, 6 and 
9, the substrate temperature is held constant at 420 °C. 

Two experimental methods were used for thickness 
measurements; the "Weighting method" and the "Optical 
interference fringes method". The Weighting method 
gives an approximate value for the thickness of the thin 
films with an error 30 %. A digital balance with accuracy 
of (± 0.1× 10–3 gm) was used for weighting the needed 
materials and for measured the thickness of the prepared 
films. He-Ne laser of wavelength 632.8 nm was used for 
measured the thickness of the films by optical 
interference fringes method, the thickness of all the 
prepared films were varied between 380-400 nm. 

 

 
 

Fig. 1. The setup arrangement of the spray technique 
 

X-ray diffraction technique was used to determine the 
crystalline structure of the films before and after doping. 
X-ray has the following information: source Cukα 
radiation of the wavelength Å ( )1 54060. Aλ = , Current 

=30 m A, Voltage =40 kV, Scanning angle (20˚ to 60˚).  
The surface morphology of the prepared films was 

tested by using Atomic Force Microscope (AFM). 
The optical properties of ZnO:Al thin films are carried 

out from IR-VIS-UV spectrophotometer at wavelength 
within the range (200-850) nm. 

III. Results and Discussions 
III.1. Surface Morphology 

The general morphology of ZnO100-xAlx films are 
imaged by using Atomic Force Microscope (AFM), the 
image shows that the grain size of the prepared film is 
constructed from nanostructure of dimensions in order of 
81.7nm, 75nm. 67.6nm at x 3, 6 and 9 respectively, the 
results is clearly indicate crystallites perpendicular to the 
substrate, agglomeration of small crystallites also seems 
to be present in the prepared films, as shown in  
Figs. 2(a), (b), (c). 

Figures 2 (a), (b), (c) clearly indicate in small particle 
size, crystallite sizes were decreased due to increases of 
the Al concentration. 

Although no cracks could be detected but some holes 
indicating, porosity is present. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figs. 2. The Surface Morphology of ZnO100-xAlx, thin film (at x 3, 6 and 
9 respectively) takes from Atomic Force Microscope.(a)The grain size 

(average dimensions) =81.77 nm; (b)The grain size (average 
dimensions)=75 nm; (c)The grain size (average dimensions)= 67.65 nm 

III.2. X-Ray Patterns 

The X-ray diffraction patterns of the doped films of 
ZnO100-xAlx, at x= 3, 6 and 9 films deposited at 420 oC is 
obtained at 2θ from 20˚ to 60˚ glancing angle, there  are 
only one sharp and three small peaks present, are shown 
in Figures 3, 4, 5 respectively. These figures show that 
the film is polycrystalline crystallized in the wurtzite 
phase and presents a preferential orientation along the c-
axis, the highest peak observed at (002). The results are 
in agreement with the literature of American standard of 
testing materials (ASTM), as listed in Table I. 

It is evident that aluminium doping decreasing the 
intensity of (002) peak, as listed in Table II. (102) peak 
becomes wide. No metallic Al characteristic peak was 
observed in the x-ray pattern, this may be due to Al 
replacing zinc substitutionally in the lattice or aluminum 
segregation to the non-crystalline regions in the grain 
boundary. Suchea et al. [15] reported for sputtered films, 
there is an optimum doping level (~4 at.%) after which 
Al atoms don’t go the lattice. 

The intensity of all peaks at (002) and the average 
grain size the nanostructure ZnO100-xAlx (at x= 3, 6 and 9 
) films are listed in Table II. 

 
TABLE I 

THE VALUE OF D FOR ALL PEAKS OF ZnO100-XAlX  FILM 
TAKES FROM X-RAY PATTERN 

FILMS (hkl) 
(2θ) 

Degree 
(XRD) 

(2θ) 
Degree 
ASTM 

d 
(XRD) 

(Å) 

d 
ASTM 

(Å) 

ZnO97:Al3 

(100) 32.55 31.77 2.819 2.816 
(002) 34.35 34.42 2.608 2.602 
(101) 36.14 36.25 2.483 2.476 
(102) 47.45 47.54 1.912 1.911 

ZnO94:Al6 
(002) 34.35 34.42 2.608 2.602 
(101) 36.15 36.25 2.482 2.476 
(102) 47.43 47.54 1.915 1.911 

ZnO91:Al9 
(002) 34.45 34.42 2.601 2.602 
(101) 36.20 36.25 2.478 2.476 
(102) 47.52 47.54 1.911 1.911 
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Fig. 3. X-ray diffraction (XRD) pattern of ZnO97Al3 film 
 

0

500

1000

1500

2000

2500

3000

3500

20 25 30 35 40 45 50 55 60

2-Theta

In
te

ns
ity

 (A
. U

)

 (002)

 (102)

 
 

Fig. 4. X-ray diffraction (XRD) pattern of 
ZnO94Al6 films 
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Fig. 5. X-ray diffraction (XRD) pattern ZnO91Al9 film 
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TABLE II 
THE INTENSITY OF ALL PEAKS AT (002) AND THE AVERAGE GRAIN 

SIZE OF ZnO100-XAlX FILMS (AT X= 3, 6 AND 9 ) 

FILMS Maximum Intensity 
at (002) peaks 

Average 
grain size 

(nm) 
ZnO97:Al3 3600 81.77 
ZnO94:Al6 2700 75 
ZnO91:Al9 1800 67.65 

III.3. Photoluminescence Spectrum (Pl) 

The photoluminescence spectra (PL) of the 
nanostructure ZnO100-xAlx films are excited at 340 nm. 
The photoluminescence spectrum of the prepared films 
shows the sharp peak; it can be referred to the direct band 
transition between valance and conduction band, as show 
in Fig. 6, at these patterns there are small peaks which 
can be attributed to the formation of the surface states in 
the energy band gap [16]. 

The sharp peaks of the PL spectrum of ZnO100-xAlx are 
recorded at 590 nm, 665, 678 nm at x= 3, 6 and 9 
respectively. It can be observed that the PL peaks are 
created in the visible region, and there was shift in 
location of the sharp peaks at the PL spectrums of the all 
prepared films. 
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Fig. 6. Photoluminescence emission spectrum of the nanostructure 
ZnO97Al3, ZnO94Al6, and ZnO91Al9 films 

III.4. The Transmission and the Absorption Spectrum 

The transmission spectra of ZnO100-xAlx, thin films are 
estimated from UV- VIS-NIR spectrophotometer at 
wavelength within the range (200-850) nm. 

Figure 7 represents the transmission spectrum of 
ZnO100-xAlx films at x=3, 6, and 9, the average 
transmission was recorded within the visible region to be 
52%, 45%, 37% for ZnO97Al3, ZnO94Al6 and ZnO91Al9 
films respectively, as listed in Table III. 

It was observed from these results that the average 
transmissions are found to decrease at higher Al doping 
concentrations; this might be attributed to an increase in 
the free-carrier concentration in the prepared films. 

Therefore a lower resistivity and a higher transmission 
in the visible region are not entirely; this result was in 
good agreement with reference [2]. 

Figure 8 represents the absorption spectrum of ZnO100-

xAlx films at x=3, 6, and 9. 

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

200 300 400 500 600 700 800

Wavelength(nm)

Tr
an

sm
itt

an
ce

(%
)

%T, x=3

%T, x=9

%T, x=6

 
 

Fig. 7. The Transmission Spectrum of ZnO100-xAlx films 
at x=3, 6, and 9 
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Fig. 8. The absorbance spectrum of ZnO100-xAlx films at  
x=3, 6, and 9 

III.5. The Optical Energy Gap 

The optical band gap (Eg) is calculated by using plot 
αhν)2 vs. hν), the value of α is determined from 
transmittance spectra. The photon energy at the point 
where (αhν)2 is zero represents Eg. 

The value of the energy gap of ZnO compound as a 
bulk is equal 3.31 eV but as thin film it is depend on the 
manufacturing techniques [17]. 

The energy gap is estimated by assuming a direct and 
indirect allowed transition between valence and 
conduction bands using the fallowing equation [18]: 

 

 ( ) ( )r
gh A h Eα υ υ∗= −  (1) 

 
where A* is constant, α  is the absorption coefficient, the 
absorption coefficient the film was calculated using the 
following relation: 

 
α = 2.303A/t                              (2) 

 
where A is the absorbance, t is the thickness of the film. 
hυ  is the incident photon energy, and r is constant which 
takes the values (1/2, 3/2, 2, and 3) depending on the 
material and the type of the optical transition whether it 
is direct or indirect.  

The energy gap (Eg) is determined by extrapolating 
the straight line portion of the spectrum to αE = 0. 
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The value of the optical energy gap is calculated for 
direct allowed transition, it is also reduced after the 
increasing of Al doping ratio, it was 3.1, 3.0.eV, 2.8 eV 
for ZnO100-xAlx x=3, 6, and 9 respectively, as show in 
Figs. 9(a), (b), (c); these values are in good agreement 
with previously reported value [19], [20]. 

It can be mentioned from these figures that both the 
average transmittance and band gap are decrease at 
higher Al doping concentrations, as listed in Table III. 

 
TABLE III 

THE OPTICAL PROPERTIES OF Zno100-Xalx FILMS AT X =3, 6 AND 9 

FILMS Energy gap (eV) 
Average 

transmissions % 
at 550 nm 

ZnO97:Al3 3.1 52 
ZnO94:Al6 3.0 47 
ZnO91:Al9 2.8 35 
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Figs. 9. The direct energy gap of ZnO100-xAlx t films (at x =3, 6 and 9 ) 

(a) ZnO97:Al3 film; (b) ZnO94:Al6 film; (c) ZnO91:Al9 film 

IV. Conclusion 
Transparent ZnO100-xAlx thin films are successfully 

prepared by using chemical spray pyrolysis technique at 
substrate temperature 420°C. The Aluminums particles 

could be successfully incorporated in ZnO thin films. 
The concentration of Al was intentionally chosen to be 
large (3, 6, and 9 at %) so that the effects of Al can be 
easily detected, it may be possible to try still lower 
concentrations. 

The absorption of the films improved after doping; 
also it was found that the average transmittances of the 
prepared films are decrease at higher Al doping 
concentrations that because of the effect of the 
concentration of the free-carrier. The prepared films have 
wide direct band gap, the value of the direct energy gap 
is reduced after doping. Optimization of Al incorporation 
can give ZnO thin films with improved properties. 
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Electron Impact Collision Strengths for Fe XVI 
 
 

A. I. Refaie, A. A. Farrag 
 
 
Abstract – The energy levels and electron impact collision strengths have been calculated for 
Na- like iron. The MCDFGME package has been used in generating the relativistic wave functions 
and in calculating the energy levels and the plane wave Born (PWB) cross sections for the impact 
excitation. 
The energies of the lowest 21 levels of (1s22s22p6) 3s, 3p, 3d, 4s, 4p, 4d, 4f, 5s, 5p, 5d, 5f, and 5g 
configurations are tabulated and the electron impact excitation collision strengths have  been 
calculated among the considered 21 levels for electron energies K=50,100 and 200 Rydbergs. A 
comparison has been performed between the present calculations and the available data in 
literature showing a good agreement. Copyright © 2011 Praise Worthy Prize S.r.l. - All rights 
reserved. 
 
Keywords: Electron Impact Excitation, Collision Strength 
 
 

I. Introduction 
Iron is an abundant element in solar and fusion 

plasma, and its emission lines are observed in almost all 
the ionization stages, hence the need of theoretical 
atomic data for Fe ions since there is an insufficiency of 
required experimental results. Electron collisional 
excitations for Fe XVI ion have been the subject of 
interest due to their emission lines arising from 
transitions observed in laboratory [1] (Wang et al. 
(1988)), in solar ultraviolet, in extreme-ultraviolet (EUV) 
and in soft X-ray spectra[2]-[4] (Sandlin et al. (1986), 
Acton et al. (1985), Thomas et al. (1994)). The most 
recent examples include the work of Keenan et al. (2003) 
on EUV observations from the Solar Extreme-Ultraviolet 
Research Telescope and Spectrograph (SERTS) [5]. The 
most important calculations are those of Tayal (1994), 
the calculated collision strengths (Ω) and effective 
collision strengths (γ) for Fe XVI transitions among the 
n≤4 levels by using the standard R-matrix code for 
calculating the  wavefunctions and collision strengths 
[6]. The atomic physics calculations of Eissner et al. 
(1999) and Cornille et al. (1997) for Fe XVI  considered 
transitions between the n≤4 and n≤5 levels [7],[8], 
respectively. In their calculations they adopted the 
SuperStructure (SS) code of Eissner et al. (1974) for the 
generation of wavefunctions [9] and distorted-waves 
(DW) code of Eissner and Seaton (1972) for the 
scattering processes [10]. Recently, Aggarwal (2006) 
have used the General Purpose Relativistic Atomic 
Structure Package (GRASP) to calculate the energy 
levels and radiative rates [11], [17] and have generated 
excitation rates for Fe XVI using the fully relativistic 
Dirac atomic R-matrix code (DARC) with the inclusion 
of all levels with n≤7. Aggarwal (2007) has reported the 
results of transitions among 134 levels [12].  

Then Aggarwal (2008) discussed the results for Ω and 
γ for the inner shell transitions of Fe XVI by using 
(DARC) [13], [18]. In the present work,  the lowest 21 
fine-structure levels among the (1s22s22p6) 3s, 3p, 3d, 4s, 
4p, 4d, 4f, 5s, 5p, 5d, 5f, and 5g configurations of Fe 
XVI have been calculated. The electron impact excitation 
collision strengths have also been calculated between the 
considered 21 levels at electron energies K=50, 100 and 
200 Rydbergs. The Multi-configuration Dirac-Fock 
(MCDFGME) [14], [15] code has been used. The model 
and procedure are summarized in section 2. A 
comparison of the present data with the available 
observed values and also with the previous calculations 
are presented and discussed in section 3. A conclusion is 
given in section 4. 

II. The MCDF Method 
The general relativistic MCDF code developed by J.P. 

Desclaux and P. Indelicato [14], [15]  has been used to 
calculate bound-state wave functions and energies. 
Details of the method, including the Hamiltonian and the 
processes used to build the wave functions can be found 
elsewhere [20], [21]. The total wave function is 
calculated with the help of the variational principle. The 
total energy of the atomic system is the eigenvalue of the 
equation: 
 

ܪ ௃,ெ,∏ߖ ሺ… , ௜ݎ … . ሻ = ܧ∏,௃,ெߖ∏,௃,ெ ሺ… , ௜ݎ … . ሻ (1)
 
where ∏ is the parity, J is the total angular momentum 
eigen value, and M is  its projection on the z axis Jz. In 
this equation, the hamiltonian is given by: 
 

ܪ ൌ ∑ ஽ܪ
ே
௜ୀଵ ሺݎ௜ ሻ ൅ ∑ ௜ܸ௝ ௜ழ௝ ሺหݎ௜௝ห) (2)
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where HD is the one electron Dirac operator and Vij is an 
operator representing the electron-electron interaction.  

The expression of Vij in Coulomb gauge and in atomic 
units, is: 
 

௜ܸ௝ ൌ  
1

௜௝ݎ
െ

௜ߙ · ௝ߙ

௜௝ݎ
െ

௜ߙ · ௝ߙ 

௜௝ݎ
ቂܿݏ݋ ቀ

߱௜௝ݎ௜௝

ܿ ቁ െ 1ቃ ൅ 

൅ܿଶሺߙ௜  · · ௝ߙ௜ሻ൫ߘ ௝൯ߘ
ݏ݋ܿ ቀ

߱௜௝ ݎ௜௝
ܿ ቁ െ 1

߱௜௝
ଶ ௜௝ݎ

 
(3)

 
where rij = |ri − rj| is the inter-electronic distance, ωij is 
the energy of the exchanged photon between the two 
electrons, αi are the Dirac matrices and c is the speed of 
light. The Coulomb gauge has been used as it was 
demonstrated to provide energies free from spurious 
contributions at the ladder approximation level and must 
be used in many-body atomic structure calculations [14], 
[15].  

The term ଵ
௥೔ೕ

, represents the Coulomb interaction, the 

term 
ఈ೔.ఈೕ

௥೔ೕ
 is the Gaunt (magnetic) interaction, and the last 

two terms of equation (3) stand for the retardation 
operator. In this expression the સ operators act only on rij 
and not on the following wave functions. 

The MCDF method is defined by the particular choice 
of a trial function to solve the Dirac equation as a linear 
combination of configuration state functions (CSF): 

 

,௃,ெ,∏ߖ| ൐ൌ  ෍ ܿఔ ,ߥ| ∏, ܬ
௡

ఔୀଵ

, ܯ ൐   (4)

 
The CSF are also eigenfunctions of the parity ∏, the 

total angular momentum J2 and its projection Jz. The 
label ν stands for all other numbers (principal quantum 
number, etc.) necessary to define unambiguously the 
CSF. 

The cν are the mixing coefficients and are obtained by 
the diagonalization of the Hamiltonian matrix coming 
from the minimization of the energy in Eq. (1) with 
respect to the cν. 

The CSF are antisymmetric products of one-electron 
wave functions expressed as linear combinations of 
Slater determinants of Dirac 4-spinors: 

 

,ߥ| ∏, ,ܬ ൐ൌ ܯ ෍ ݀݅ ቎
ଵߖ

௜ሺݎଵሻ ڮ ௠ߖ
௜ ሺݎଵሻ

ڭ ڰ ڭ
ଵߖ

௜ሺݎ௠ሻ ڮ ௠ߖ
௜ ሺݎ௠ሻ

቏
ேఔ

௜ୀଵ

 (5)

 
where the Ψ-s are the one-electron wave functions and 
the coefficients di are determined by requiring that the 
CSF is an eigenstate of J2 and Jz. The di coefficients are 
obtained by requiring that the CSF are eigenstates of J2 
and Jz.The Multi-Configuration approach is characterized 
by the fact that a small number of configurations can 
account for a large amount of correlations. 

Electron-impact excitation cross sections have been 
computed using the first Born approximation following 
the work of Kim et al. [22], [23]. 

In these calculations, the cross sections for the 
processes leading from each level j of the Sq+ ion ground 
configuration, to the excited level i of the Sq+ ion σji have 
been obtained. 

A Multi-Configuration Dirac-Fock (MCDF) wave 
function for the atom and a Dirac wave function for the 
free electron have been used. Only the Coulomb 
interaction between the free electron and the atomic 
electrons has been considered. 

Then, the individual cross sections thus obtained were 
then weighted by the statistical weight gj of each j level 
of the configuration in order to obtain the excitation cross 
section σji. 

The relationship between the collision strengths Ωij for 
the electron impact excitation and the excitation cross 
sections σij is given by: 

 

Ω௜௝ ൌ
௜ܭ ௜௝ߪ

ଶ݃௜

଴ܽߨ
ଶ  (6)

 
have been used, where ܽ଴ is the Bohr radius, ݃௜ is the 
statistical weight of the initial target level, ܭ௜

ଶ is the 
kinetic energy of the incident electron in Rydbergs (Ry). 

III. Results and Discussion 
III.1. Energy Levels 

Since Fe XVI is a moderate heavy ion with (Z=26), 
the relativistic effects are expected to be important in the 
determination of the wave functions and subsequently in 
the calculation of the collision strengths Ω. 

The present calculated energy levels for the 21 fine 
structure levels, the observed values of NIST [16], the 
theoretical calculations of Cornille et.al (1997) using the 
superstructure (SS) code of Eissner et al (1974) [8] , 
Aggarwal et.al. (2006), which used the GRASP code [17] 
with QED effects (GRASP1) and without QED effects 
(GRASP2) and the flexible atomic code FAC code of Gu 
[19] are presented in Table I. 

In general, the present theoretical energies calculated 
using of MCDFGME code [14], [15] agree well in 
magnitude and ordering with the experimental ones 
(NIST)[16]. 

There is an excellent agreement between the present 
calculations and the other theoretical calculations of 
Grasp, FAC and the SS. The present calculated energy 
levels show accuracy up to 1%. 

III.2. Collision Strengths 

The present values for the collision strengths for Fe 
XVI based on the plane wave Born approximation PWB 
at energies at the incoming electron energies of 50, 100, 
200 Rydbergs are given in Table II.  
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TABLE I 
ENERGY LEVELS (in Ryd) FOR Fe XVI 

Index Configuration Level Nist This 
work 

Cornille GRASPa GRASPb FAC 

1 3s 2S1/2 0.000 0.000 0.000 0.000 0.000 0.000 
2 3p 2Po

1/2 2.526 2.505 2.530 2.533 2.535 2.535 
3 3p 2Po

3/2 2.717 2.720 2.716 2.728 2.725 2.725 
4 3d 2D3/2 6.155 6.174 6.179 6.176 6.168 6.159 
5 3d 2D5/2 6.182 6.200 6.209 6.205 6.194 6.184 
6 4s 2S1/2 17.018 17.000 17.017 17.004 16.994 16.993 
7 4p 2Po

1/2 18.025 18.004 18.021 18.008 18.000 17.999 
8 4p 2Po

3/2 18.098 18.078 18.093 18.084 18.074 18.073 
9 4d 2D3/2 19.357 19.342 19.364 19.349 19.337 19.328 
10 4d 2D5/2 19.368 19.354 19.377 19.362 19.349 19.340 
11 4f 2Fo

5/2 19.908 19.882 19.914 19.894 19.880 19.887 
12 4f 2Fo

7/2 19.913 19.886 19.919 19.899 19.884 19.891 
13 5s 2S1/2 24.500 24.240 24.266 24.248 24.236 24.233 
14 5p 2Po

1/2 24.761 24.736 24.760 24.743 24.732 24.728 
15 5p 2Po

3/2 24.797 24.772 24.796 24.781 24.768 24.765 
16 5d 2D3/2 25.407 25.381 25.409 25.391 25.378 25.371 
17 5d 2D5/2 25.412 25.387 25.416 25.398 25.384 25.377 
18 5f 2Fo

5/2 25.684 25.654 25.686 25.666 25.652 25.661 
19 5f 2Fo

7/2 25.687 25.656 25.689 25.668 25.654 25.663 
20 5g 2G7/2 25.716 25.680 25.692 25.678 25.675 
21 5g 2G9/2 25.716 25.682   25.694 25.679 25.676 

 
TABLE II 

COLLISION STRENGTHS (Ωij) FOR Fe XVI 

Transition  Ωij  Transition  Ωij  

i j 100 Ryd 200Ryd 50 Ryd  i j 100 Ryd 200Ryd 50 Ryd 
1 2 2.2095E+00 2.4840E+00 1.9303E+00  3 13 1.0229E-02 1.6436E-02 4.4267E-03 
1 3 4.3324E+00 4.8857E+00 3.7731E+00  3 14 5.1629E-03 5.5938E-03 4.3014E-03 
1 4 1.4088E-01 1.4158E-01 1.3947E-01  3 15 7.7039E-02 8.2320E-02 6.6481E-02 
1 5 2.1181E-01 2.1288E-01 2.0967E-01  3 16 5.5123E-03 1.0135E-02 1.0595E-03 
1 6 1.0193E-01 1.0994E-01 8.5909E-02  3 17 4.8861E-02 9.0272E-02 9.0153E-03 
1 7 2.5042E-02 4.3491E-02 1.1233E-02  3 18 8.0420E-03 8.3452E-03 7.4360E-03 
1 8 4.6358E-02 8.0309E-02 2.1434E-02  3 19 5.9600E-02 5.3868E-02 4.8382E-02 
1 9 3.0245E-02 3.4937E-02 2.0862E-02  3 20 2.8368E-03 2.8368E-03 2.8368E-03 
1 10 4.5025E-02 5.2038E-02 3.1001E-02  3 21 2.1451E-02 2.1451E-02 2.1451E-02 
1 11 4.2047E-02 4.2047E-02 4.2047E-02  4 5 3.6262E-02 3.6262E-02 3.6262E-02 
1 12 5.6065E-02 5.6065E-02 5.6065E-02  4 6 1.9352E-02 2.0235E-02 1.7584E-02 
1 13 1.9669E-02 2.1220E-02 1.6566E-02  4 7 6.4770E-02 9.3635E-02 3.8716E-02 
1 14 5.0253E-03 9.4519E-03 1.3032E-03  4 8 1.7227E-02 2.2632E-02 1.2377E-02 
1 15 9.4698E-03 1.7786E-02 2.5756E-03  4 9 4.3649E-01 4.5708E-01 3.9535E-01 
1 16 9.1593E-03 1.0295E-02 6.8885E-03  4 10 1.0486E-02 1.1204E-02 9.0499E-03 
1 17 1.3677E-02 1.5382E-02 1.0268E-02  4 11 1.7283E+00 2.4595E+00 1.0076E+00
1 18 8.0064E-03 8.0064E-03 8.0064E-03  4 12 6.5624E-03 6.5624E-03 6.5624E-03 
1 19 1.0688E-02 1.0688E-02 1.0688E-02  4 13 2.9009E-03 2.9961E-03 2.7106E-03 
1 20 4.9633E-03 4.9633E-03 4.9633E-03  4 14 7.7671E-03 1.0890E-02 4.7356E-03 
1 21 6.2039E-03 6.2039E-03 6.2039E-03  4 15 3.8067E-03 4.3992E-03 3.2361E-03 
2 3 1.7269E-01 1.7269E-01 1.7269E-01  4 16 8.3917E-02 8.7047E-02 7.7658E-02 
2 4 3.1633E+00 3.6143E+00 2.7068E+00  4 17 2.9914E-03 3.1012E-03 2.7718E-03 
2 5 3.8284E-02 3.8284E-02 3.8284E-02  4 18 2.7526E-01 3.7963E-01 1.6291E-01 
2 6 3.6621E-02 5.7319E-02 1.8892E-02  4 19 1.8913E-03 1.8913E-03 1.8913E-03 
2 7 1.1970E-01 1.2698E-01 1.0514E-01  4 20 6.1452E-02 7.3209E-02 3.7945E-02 
2 8 2.2081E-02 2.4359E-02 1.7527E-02  4 21 6.7321E-04 6.7321E-04 6.7321E-04 
2 9 1.3157E-01 2.1802E-01 5.6817E-02  5 6 2.9270E-02 3.0601E-02 2.6609E-02 
2 10 1.2788E-02 1.2788E-02 1.2788E-02  5 7 7.9980E-03 7.9980E-03 7.9980E-03 
2 11 2.0978E-01 2.2445E-01 1.8045E-01  5 8 1.0639E-01 1.5570E-01 6.2113E-02 
2 12 1.6357E-02 1.6357E-02 1.6357E-02  5 9 1.0592E-02 1.1316E-02 9.1468E-03 
2 13 4.8000E-03 7.7059E-03 2.1114E-03  5 10 6.2080E-01 6.5295E-01 5.5652E-01 
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Transition  Ωij  Transition  Ωij  

i j 100 Ryd 200Ryd 50 Ryd  i j 100 Ryd 200Ryd 50 Ryd 
2 14 2.3874E-02 2.5212E-02 2.1199E-02  5 11 9.9841E-02 1.5224E-01 4.8186E-02 
2 15 4.8394E-03 5.2674E-03 3.9836E-03  5 12 2.4731E+00 3.5217E+00 1.4394E+00
2 16 3.1237E-02 5.3427E-02 9.9781E-03  5 13 4.3731E-03 4.5156E-03 4.0880E-03 
2 17 3.5141E-03 3.5141E-03 3.5141E-03  5 14 1.7177E-03 1.7177E-03 1.7177E-03 
2 18 3.5743E-02 3.6857E-02 3.3516E-02  5 15 1.5623E-02 2.1012E-02 1.0425E-02 
2 19 3.2955E-03 3.2955E-03 3.2955E-03  5 16 3.0103E-03 3.1197E-03 2.7915E-03 
2 20 1.7508E-02 1.7508E-02 1.7508E-02  5 17 1.2004E-01 1.2494E-01 1.1026E-01 
2 21 2.4460E-03 2.4460E-03 2.4460E-03  5 18 1.6443E-02 2.3889E-02 8.4248E-03 
3 4 5.6727E-01 6.5752E-01 4.7595E-01  5 19 3.8885E-01 5.3818E-01 2.2808E-01 
3 5 5.5365E+00 6.3509E+00 4.7123E+00  5 20 5.5029E-03 6.8143E-03 2.8811E-03 
3 6 8.0012E-02 1.2490E-01 4.1203E-02  5 21 8.6601E-02 1.0301E-01 5.3806E-02 
3 7 2.4282E-02 2.6678E-02 1.9491E-02  6 7 8.9341E+00 9.9339E+00 7.9287E+00
3 8 3.8759E-01 4.1632E-01 3.3016E-01  6 8 1.7516E+01 1.9524E+01 1.5496E+01
3 9 1.8991E-02 3.7388E-02 2.9768E-03  6 9 6.1432E-01 6.1591E-01 6.1115E-01 
3 10 2.0219E-01 3.6631E-01 5.9488E-02  6 10 9.2261E-01 9.2502E-01 9.1780E-01 
3 11 3.5458E-02 3.9668E-02 2.7043E-02  6 11 1.1411E-01 1.1411E-01 1.1411E-01 
3 12 2.9282E-01 3.1829E-01 2.4188E-01  6 12 1.5229E-01 1.5229E-01 1.5229E-01 
6 13 3.4365E-01 3.5802E-01 3.1489E-01  10 11 1.6240E+00 1.7858E+00 1.4615E+00
6 14 1.0195E-01 1.5137E-01 6.0223E-02  10 12 3.3859E+01 3.7099E+01 3.0605E+01
6 15 1.8858E-01 2.7920E-01 1.1283E-01  10 13 1.5179E-01 1.5586E-01 1.4367E-01 
6 16 6.8798E-02 7.4754E-02 5.6885E-02  10 14 3.5123E-02 3.5123E-02 3.5123E-02 
6 17 1.0230E-01 1.1118E-01 8.4535E-02  10 15 6.6837E-01 9.2241E-01 4.3021E-01 
6 18 6.6850E-02 6.6850E-02 6.6850E-02  10 16 4.1944E-02 4.3623E-02 3.8588E-02 
6 19 8.9004E-02 8.9004E-02 8.9004E-02  10 17 2.0098E+00 2.0844E+00 1.8607E+00
6 20 7.1645E-02 7.1645E-02 7.1645E-02  10 18 1.8180E-01 2.6911E-01 9.7786E-02 
6 21 8.9565E-02 8.9565E-02 8.9565E-02  10 19 4.3313E+00 6.0749E+00 2.6537E+00
7 8 6.5372E-01 6.5374E-01 6.5368E-01  10 20 1.2607E-01 1.3068E-01 1.1687E-01 
7 9 1.5560E+01 1.7490E+01 1.3620E+01  10 21 1.8851E+00 1.9427E+00 1.7699E+00
7 10 1.6865E-01 1.6865E-01 1.6865E-01  11 12 9.7925E-02 9.7925E-02 9.7925E-02 
7 11 6.0825E-01 6.0923E-01 6.0628E-01  11 13 1.6480E-02 1.6480E-02 1.6480E-02 
7 12 4.7110E-02 4.7110E-02 4.7110E-02  11 14 4.7822E-02 4.8996E-02 4.5474E-02 
7 13 2.1530E-01 3.0255E-01 1.3471E-01  11 15 2.0574E-02 2.0903E-02 1.9917E-02 
7 14 3.7647E-01 3.9031E-01 3.4881E-01  11 16 1.9521E-01 2.4360E-01 1.5187E-01 
7 15 7.9425E-02 8.3752E-02 7.0773E-02  11 17 1.4468E-02 1.7864E-02 1.1430E-02 
7 16 3.5354E-01 5.2489E-01 2.0169E-01  11 18 1.6792E+00 1.7269E+00 1.5837E+00
7 17 3.4690E-02 3.4690E-02 3.4690E-02  11 19 1.4627E-02 1.5341E-02 1.3200E-02 
7 18 3.5551E-01 3.7470E-01 3.1713E-01  11 20 1.6683E+01 1.8893E+01 1.2907E+01
7 19 3.1518E-02 3.1518E-02 3.1518E-02  11 21 2.4039E-02 2.4039E-02 2.4039E-02 
7 20 2.4662E-01 2.4662E-01 2.4662E-01  12 13 2.2020E-02 2.2020E-02 2.2020E-02 
7 21 3.6095E-02 3.6095E-02 3.6095E-02  12 14 8.4023E-03 8.4023E-03 8.4023E-03 
7 9 2.8467E+00 3.2334E+00 2.4579E+00  12 15 7.9469E-02 8.1444E-02 7.5521E-02 
7 10 2.7383E+01 3.0868E+01 2.3878E+01  12 16 9.7533E-03 9.7533E-03 9.7533E-03 
7 11 1.2240E-01 1.2266E-01 1.2188E-01  12 17 2.4961E-01 3.1797E-01 1.8844E-01 
7 12 8.6957E-01 8.7114E-01 8.6644E-01  12 18 1.4693E-02 1.5408E-02 1.3264E-02 
7 13 4.6664E-01 6.5384E-01 2.9302E-01  12 19 2.2595E+00 2.3240E+00 2.1306E+00
7 14 8.6807E-02 9.1354E-02 7.7716E-02  12 20 5.5817E-01 6.4006E-01 4.1821E-01 
7 15 1.2707E+00 1.3252E+00 1.1618E+00  12 21 2.1616E+01 2.4484E+01 1.6716E+01
7 16 7.8011E-02 1.1491E-01 4.5127E-02  13 14 2.5130E+01 2.7755E+01 2.2495E+01
7 17 6.0898E-01 9.3686E-01 3.1705E-01  13 15 4.9287E+01 5.4549E+01 4.4003E+01
7 18 7.3884E-02 7.9445E-02 6.2765E-02  13 16 1.6867E+00 1.6894E+00 1.6813E+00
7 19 5.2028E-01 5.5364E-01 4.5358E-01  13 17 2.5315E+00 2.5356E+00 2.5234E+00
7 20 4.4061E-02 4.4061E-02 4.4061E-02  13 18 4.0262E-01 4.0262E-01 4.0262E-01 
7 21 3.0109E-01 3.0109E-01 3.0109E-01  13 19 5.3714E-01 5.3714E-01 5.3714E-01 
9 10 1.7309E-01 1.7309E-01 1.7309E-01  13 20 8.7210E-02 8.7210E-02 8.7210E-02 
9 11 2.3656E+01 2.5923E+01 2.1378E+01  13 21 1.0908E-01 1.0908E-01 1.0908E-01 
9 12 2.8953E-02 2.8953E-02 2.8953E-02  14 15 1.7426E+00 1.7426E+00 1.7426E+00
9 13 1.0035E-01 1.0305E-01 9.4955E-02  14 16 4.6540E+01 5.1834E+01 4.1225E+01
9 14 4.1109E-01 5.5915E-01 2.7195E-01  14 17 4.6863E-01 4.6863E-01 4.6863E-01 
9 15 9.3178E-02 1.2103E-01 6.7086E-02  14 18 2.1773E+00 2.1795E+00 2.1728E+00
9 16 1.4073E+00 1.4551E+00 1.3119E+00  14 19 1.6478E-01 1.6478E-01 1.6478E-01 
9 17 4.1502E-02 4.3167E-02 3.8174E-02  14 20 2.6006E-01 2.6006E-01 2.6006E-01 
9 18 3.0390E+00 4.2527E+00 1.8714E+00  14 21 4.3425E-02 4.3425E-02 4.3425E-02 
9 19 2.1992E-02 2.1992E-02 2.1992E-02  15 16 8.6010E+00 9.6628E+00 7.5352E+00
9 20 1.3547E+00 1.3962E+00 1.2718E+00  15 17 8.2121E+01 9.1686E+01 7.2520E+01
9 21 1.4139E-02 1.4139E-02 1.4139E-02  15 18 4.3008E-01 4.3068E-01 4.2890E-01 
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Transition  Ωij  Transition  Ωij  

i j 100 Ryd 200Ryd 50 Ryd  i j 100 Ryd 200Ryd 50 Ryd 
15 19 3.1094E+00 3.1130E+00 3.1023E+00  17 19 1.2526E+02 1.3665E+02 1.1383E+02
15 20 6.1587E-02 6.1587E-02 6.1587E-02  17 20 1.3278E-01 1.3280E-01 1.3274E-01 
15 21 3.2894E-01 3.2894E-01 3.2894E-01  17 21 1.9697E+00 1.9699E+00 1.9692E+00
16 17 4.9637E-01 4.9637E-01 4.9637E-01  18 19 3.0825E-01 3.0825E-01 3.0825E-01 
16 18 8.7467E+01 9.5438E+01 7.9466E+01  18 20 1.0573E+02 1.1199E+02 9.9446E+01
16 19 1.0163E-01 1.0163E-01 1.0163E-01  18 21 4.5098E-02 4.5098E-02 4.5098E-02 
16 20 1.4488E+00 1.4490E+00 1.4485E+00  19 20 4.1329E+00 4.3647E+00 3.9004E+00
16 21 2.4630E-02 2.4630E-02 2.4630E-02  19 21 1.4652E+02 1.5464E+02 1.3838E+02
17 18 6.0313E+00 6.6003E+00 5.4602E+00  20 21 1.7566E-01 1.7566E-01 1.7566E-01 

 
The present results are compared with those of 

Cornille et al (1997) [8] which used the distorted wave 
(DW) code of Eissner and Seaton (1972) for the 
scattering process and the generation of collision 
strengths, and with Aggarwal et al ( 2006, 2008) [11]-
[13] where they employed the DARC program of 
Norrington and GRANT (2006) [18]. 

To have a quantitative understanding for the 
comparison, Figures 1, 2 and 3 shows the collision 
strengths of the three transition lines namely: 
2p63s 2S1/2 -2p63p 2P1/2, 2p63s 2S1/2 -2p63p 2P3/2 and 2p63p 
2P1/2 -2p63d 2D3/2, which are dipole allowed transitions.  
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Fig. 1. Comparison of collision strengths for the 
transition: 2p63s 2S1/2 -2p63p 2P1/2 
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Fig. 2. Comparison of collision strengths for the 
transition:  2p63s 2S1/2 -2p63p 2P3/2 
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Fig. 3. Comparison of collision strengths for the 
transition: 2p63p 2P1/2 -2p63d 2D3/2 

 
It is clear from Figures 1, 2 and  3 that there is an 

agreement between the different calculations and they all 
present the same trends, the discrepancy is up to 3.8 % 
with Aggarwal et al. and 4.1% with Cornille et al. The 
values of the collision strengths Ω for any of these 
calculations can be safely used for the determination of 
the excitation rates for these transitions. 

Similar comparisons for other transitions are presented 
in Figures 4, 5 and 6 where the present calculations have 
been compared for the three dipole forbidden transitions 
namely: 2p63s 2S1/2 - 2p63d 2D3/2, 2p63s 2S1/2 - 2p63d 2D5/2 
, 2p63p 2P1/2 -  2p63p 2P3/2, with those of Cornille et al. 
and Aggarwal et al. 
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Fig. 4. Comparison of collision strengths for the 
transition:  2p63s 2S1/2 - 2p63d 2D3/2 
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Fig. 5. Comparison of collision strengths for the 
transition: 2p63s 2S1/2 - 2p63d 2D5/2 
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Fig. 6. Comparison of collision strengths for the 
transition: 2p63p 2P1/2 - 2p63p 2P3/2 

 
It is clear from the Figures that there is an agreement 

between the different calculations the discrepancy is up 
to 1.9 % with Aggarwal et al. and 8.6 % with Cornille et 
al. Since there is no selection rules in the electron – atom 
collision through the dipole forbidden transitions, thus 
the collision strength for the allowed transition, Figures 
1, 2 and 3 are one order of magnitude larger than that of 
the forbidden transitions Figures 4, 5 and 6. Figures 7, 8 
and 9 present the dipole forbidden transitions namely: 
2p64s 2S1/2 - 2p65d 2D3/2 , 2p64s 2S1/2 - 2p65d 2D5/2,  2p64p 
2P1/2 -2p65p 2P3/2. 
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Fig. 7. Comparison of collision strengths 
for the transition: 2p64s 2S1/2 - 2p65d 2D3/2 
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Fig. 8. Comparison of collision strengths for the 
transition: 2p64s 2S1/2 - 2p65d 2D5/2 
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Fig. 9. Comparison of collision strengths for the 
transition: 2p64p 2P1/2 -2p65p2P3/2 

 
As it is clear from the figures, the present data are in 

good agreement with DARC values but a large 
discrepancy up to a factor of four exists with the values 
of Cornille et al., the differences with the values of 
Cornille et al could be attributed to the inclusion of a 
limited range of partial waves in their DW calculations as 
mentioned by Aggarwal et al.[11]-[13]. 

The present calculations of the electron impact 
excitation collision strengths based on the plane wave 
born cross sections give reliable results especially for 
high impact energies. The present calculated values agree 
with those of the more sophisticated existing calculations 
(Aggarwal et. al.) within 1% up to 15% for most of the 
transitions. 

IV. Conclusion 
The primary goal of this paper is to compute 

systematically reliable ab-initio electron impact 
excitation cross-sections and collision strengths for 
astrophysical applications and for plasma modeling.  
Therefore, the MCDFGME code used for performing the 
calculations add a different reliable procedure to the 
existing ones to compute the electron excitation cross-
sections and collision strengths. In the present work, the 
results for energy levels, collision strengths for 
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transitions among the 21 lowest levels of Fe XVI have 
been presented for all transitions at 50, 100, 200 
Rydbergs. The present calculations have been performed 
in the plane wave Born approximation and  relativistic 
effects have been included in the generation of the wave 
functions. The MCDFGME code has been used in 
performing the calculations. 
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Structure and Properties of YBa2Cu3O7-δ Superconductor 
Doped with MnO and NiO 

 
 

M. Kavosh, M. Arefian 
 
 
Abstract – In this paper, the YBa2Cu3O7 superconductor is prepared by using the solid state 
method and the effect of doping bulk MnO and NiO on the structure, lattice parameter and oxygen 
coefficient changing. The results show that these doping doses make a phase transition from 
orthorhombic to tetragonal in MnO. But in NiO the composition remains orthorhombic in all 
ranges of doping, not affect so much on the structure and lattice parameters. The electrical 
resistance of samples increased with doping. Copyright © 2011 Praise Worthy Prize S.r.l. - All 
rights reserved. 
 
Keywords: Superconductor, Structure, Substitutions, Critical Temperature 
 

 

I. Introduction 
The importance of substitution issue in 

superconductors is so important that many of 
superconductor compositions of copper oxide are the 
outcomes of studies and surveys on substitution of 
different elements in this group of substances. Doping of 
some substances such as medium metals of zinc and 
cobalt in YBa2Cu3O7-λ instead of copper makes some 
changing on substance structure and transition 
temperature. In this paper, by using different amounts of 
zinc oxide instead of copper, we survey changing due to 
it. In this research we dope (M=Ni, Mn) by x equals to 0, 
0.1, 0.2, 0.3 by YBa2Cu3O7-λ and also study that 
substitution of M for Cu makes what effect on lattice 
constant structure and critical temperature [1], [2]. 

II. Description of Experiment                     
and Conclusions 

In order to structuring these samples we used solid 
state method. In this method, in order to providing 
substances with general formula of YBa2Cu3-xNixO7-λ  
from CuO, Y2O3, BaO2 and NiO and in order to 
providing YBa2Cu3-xMnxO7-λ from CuO, Y2O3, BaO2 and 
MnO. [3]These substances with appropriate stocumetry 
were mixed together and then were milled. The resultant 
powder by helping of cylindrical steel frame and 
hydraulic smashing converted to pellet. 

Then samples by the rate of 3°C/min were raised in 
the forge to achieve to 930°C and it have been 
maintaining in that temperature for 24 h, then by the rate 
of 0.1° C/min and stilly decreases and thus, it allows 
oxygen absorption to products After the end of 
structuring gangue step the experiment of meissner effect 
carried out in liquid nitrogen temperature on samples, 
none of the samples show this effect, that it represent that 

this substitutions has lowered transition temperature 
severely. [4] By using radiation diffraction diagrams of x 
samples, standard card and computer software, lattice 
constants and extensive biont volume were attained 
according to Table I and II [5], [6]. 

 
TABLE I 

LATTICE PARAMETERS AND UNIVALENT CELL VOLUME 
OF YBa2Cu3-xMnxOy COMPOSITIONS 

univalent 
cell 

30

Α

parameter c
0

Α  

Parameter b 
0

Α  

Parameter a
0

Α  

Impurity 
Mn 

173/7911/70 3/86 3/84X=0/1 
172/61 11/65 3/85 3/85 X=0/2 
171/1911/55 3/85 3/85X=0/3 

 
TABLE II 

LATTICE PARAMETERS AND UNIVALENT CELL VOLUME OF 
YBa2Cu3-xNixOy COMPOSITIONS 

Univalent 
cell 

30

Α

Parameter c
0

Α  

Parameter b 
0

Α  

Parameter a
0

Α  

Impurity 
Ni 

171/3311/65 3/85 3/80X=0/1 
171/08 11/642 3/847 3/82 X=0/2 
170/6011/60 3/84 3/83X=0/3 

 
In according to above tables, lattice parameters and 

biont cell volume changing unto increasing of doping 
percent has been drawn. In according to lattice 
parameters and drawen diagrams we understood that in 
duped samples with Mn, by x increasing structural 
changing from ourtorombic to tetragonal has been done. 
But in samples containing Ni, occurs no structural 
changing and compositions containing Ni remained in all 
the ranges of ourtorombic, meanwhile x includes special 
range that is called dissolution limit. This limit for Ni 
places between 0 and 0.3 [7]. 
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Fig. 1. Changing of lattice parameters of (a) and (b) unto changing  
of Mn coefficient in YBa2Cu3-xMnxOy compositions 

 

 
 

Fig. 2. Changing of lattice parameters of (a) and (b) unto changing of 
Zn coefficient in YBa2Cu3-xNixOy compositions 

 

 
 

Fig. 3. Changing of lattice parameter (c) interchanging f Mn coefficient 
in YBa2Cu3-xMnxOy 

 

 
 

Fig. 4. Changing of lattice parameter ( c) unto changing f Ni coefficient 
in YBa2Cu3-xNixOy 

 

Changing of parameter (c) in above figures show 
similar manner for Ni and Mn, so that by increasing x, 
parameter (c) decreases. 
 

 
 

Fig. 5. Changing of univalent cell volume unto changing of Mn 
coefficient, YBa2Cu3-xMnxOy 

 

 
 

Fig. 6. Changing of univalent cell volume unto changing 
of Ni coefficient 

 
In according to Figures 5 to 6 it can be said that 

samples containing Ni and MN represent expectable 
changing, because ionic radius of copper is more than Ni 
and Mn ,volume in compositions containing Ni and Mn 
by x increasing have to be reduced, since replaces by a 
similar ion. After the end of gangue structuring step, 
experiment of meisser on the samples carried out in the 
liquid nitrogen temperature. The samples show this 
effect only in x=0.1. But in the other substitutions do not 
show this effect. In order to measuring critical 
temperature, in 4 places, wire was curled around the bars 
and in order to make better connection silver glue was 
used. By using standard method, 4 TC bars wee 
measured as it was expected substitution of copper has 
complicated effect on superconductor properties and 
critical temperature and causes severe decreasing of TC. 
Finally oxygen coefficient of samples or duped as one of 
the most important determining parameters of 
superconductor properties was determined by iodometric 
titration method.In according to Table III, changing of 
lattice parameters (a) and (b) unto changing of oxygen 
coefficient was drawen [8]. 
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TABLE III 
MEASURING OXYGEN COEFFICIENTS OF SAMPLES BY IODOMETRIC 

TITRATION METHOD 
Percent being 
ourtormbic Oxygencofficient Measured sample 

0/77 6/9 Pure sample Y 

0/65 6/89 doped sample with 
0/1 Ni 

0/35 6/87 doped sample with 
0/2 Ni 

0/17 6/75 doped sample with 
0/3 Ni 

0/25 6/93 doped sample with 
0/1 Mn 

0 6/91 doped sample with 
0/2 Mn 

0 6/81 doped sample with 
0/3 Mn 

 

 
 

Fig. 7. Changing of lattice parameters a(▲) and b(●) unto changing 
oxygen coefficients in YBa2Cu3-xMnxOy 

 

 
 

Fig. 8. Changing of lattice parameters a(▲) and b(●) unto changing 
oxygen coefficients in YBa2Cu3-xNixOy 

 
In the case of NI ,yet it is not completely significant 

that which of the Cu(1) and Cu(2) places are preferable 
.of course , with due attention to lack of structured 
transition temperature probably Ni ions substitute in the 
Cu(2) place [9], [10]. 

III. Conclusion 
In this paper, YBa2Cu3O7-ð superconductor where 

M=Ni, Mn and was structured by contents equal to 0, 0.1, 
0.2, 0.3.the resultant conclusion of duping effect of NiO, 
MnO on structure, lattice constant critical temperature 
and oxygen coefficient amounts have been surveyed . 

Study on changing of parameters (a) and (b) unto doping 
for NiO showed that YBa2Cu3-xNixOy composition 
remained in all the ranges of ourtorombic duping and its 
biont cell volume and parameter (c ) decreases. oxygen 
coefficient amounts also are compatible to lattice 
parameter diagrams of (a) and (b). in duping MnO, by 
increasing of x, transition phase has been done from 
ourtorombic to tetragonal and biont cell volume and also 
parameter (c ) decreas. 
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Scrutiny of a Particle in Schwarzschild Black Hole 
and Tunneling Effect 

 
 

Amir Hassanfiroozi1, Mohammadreza Maddah2, Mahdi Massoumin3 

 
 
Abstract – By solving Klein-Gordon equation in Schwarzschild metric, we can attain some 
convergent equations in different black hole points. that give us some information about particles 
in these intervals and also shift of energy level in this particle, inspection of equation of motion 
and interpretation of black hole potential and also we can calculate coefficient of particle 
transmission in consequence of quantum tunneling, in this paper we proceed to investigate most of 
mentioned subjects. Copyright © 2011 Praise Worthy Prize S.r.l. - All rights reserved. 
 
Keywords: Schwarzschild Metric, Black Hole, Tunneling, WKB Approximation 
 

 

Nomenclature 
M Black hole mass 
µ Particle mass 
ݎ  The tortoise radial coordinate כ

௟ܻ௠ Spherical Harmonics 

I. Introduction 
Black holes are one of the most fascinating parts of 

theoretical, astrophysical and cosmological physics ever 
since Einstein’s discovery of the theory of general 
relativity of gravitation. They are very important 
members of the universe. Because of their huge 
gravitational force no objects, not even light, can escape 
from them. There exists a region called “event horizon” 
beyond which all objects are strongly attracted towards 
the center of a black hole leaving absolutely no chance 
for them to crossover the event horizon to the outer 
region. 

The simplest solution of Einstein’s equations is the 
Schwarzschild solution. Its metric describes the 
deformation of space-time produced be a static object 
with a spherical symmetry. The idea is that the energy of 
the particle changes sign as it crosses the horizon, so that 
a pair created. Just inside or outside the horizon can 
materialize with zero total energy, after one member of 
the pair has tunneled to the opposite side. In this method, 
particles are allowed to follow classically forbidden 
trajectories, by starting just behind the horizon onward to 
infinity. 

The particles then travel back in time, since the 
horizon is locally to the future of the external region. 
Thus the classical one particle action becomes complex 
and so the tunneling amplitude is governed by the 
imaginary part of this action for the outgoing particle. 
However, the action for the ingoing particle must be real. 
Since classically a particle can fall behind the horizon. 
This present has the purpose to find mentioned [1]. 

II. The Equation 
A massless particle in a black hole background is 

described by the Klein-Gordon equation [2]. We write 
Klein-Gordon equation ቀ డమ

௖మడ௧మ െ ܸଶቁ ൌ 0 in 
Schwarzschild metric. We can find its function by 
separation of variables method as follows: 

 

߰௟௠ሺݐ, ,ݎ ,ߠ ߶ሻ ൌ
ܴ௟ఠሺݎሻ

ݎ ௟ܻ௠ሺߠ, ߶ሻ ݁ି௜ఠ௧ (1)

 
The ܴ௟ఠሺݎሻ differential equation shown below: 
 

݀ଶܴ௟ఠ

ݎ݀ כ ²
൅ ቆ߱ଶ െ

݈ሺ݈ ൅ 1ሻ
ଶݎ ൅

ܯ2
ଷݎ ቇ ൬1 െ

ܯ2
ݎ ൰ ܴ௟ఠ ൌ 0 (2)

 
Regge and Wheleer (RW) [1], [3] proved the vacuum 

stability of the Schwarzschild black hole, which source is 
a freely falling test mass m towards black hole of large 
mass M. The RW partialdifferential equation, derived 
from the Einstein field equations, represents the first 
order perturbations of the Schwarzschild metric. The 
tortoise radial coordinate ݎ  :defined by כ

 
ݎ כ ൌ ݎ ൅ ܯ2 ݈݊ሃ

ݎ
ܯ2 െ 1ሃ (3)

 
Also ௟ܻ௠ሺߠ, ߶ሻ is spherical Harmonics and ߱ is 

separating constant. 
Now, we rewrite this equation on the basis ofݎ and use 

transformation of below variable: 
 

݀ଶ

ݎ݀ ଶכ ൌ
ݎ݀

ݎ݀ כ
݀
ݎ݀

ݎ݀
ݎ݀ כ

݀
ݎ݀  ൌ 

ൌ ൬
ݎ݀

ݎ݀ ൰כ
ଶ ݀ଶ

ଶݎ݀ ൅
݀

ݎ݀ ൬
ݎ݀

ݎ݀ ൰כ
݀

 ,   ݎ݀

݀ଶ

ݎ݀ ଶכ ൌ ൬1 െ
ܯ2

ݎ ൰
ଶ ݀ଶ

ଶݎ݀ ൅
ܯ2
ଶݎ

݀
 ݎ݀

(4)
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with the position ݎ ൌ כ ݎ ൅ ሃ݈݊ ܯ2 ௥
ଶெ

െ 1ሃ  is finally 
recast as ሾ4ሿ: 

 

൬1 െ
ܯ2

ݎ ൰
ଶ ݀ଶܴ௟ఠ

ଶݎ݀ ൅
ܯ2
ଶݎ

ܴ݀௟ఠ

ݎ݀ ൅ 

൅ ቀ߱ଶ െ ௟ሺ௟ାଵሻ
௥మ ൅ ଶெ

௥య ቁ ቀ1 െ ଶெ
௥

ቁ ܴ௟ఠ ൌ 0   
(5)

 
By using follow change variable: 
 

1 െ
ܯ2

ݎ ൌ (6) ݖ

 
݀ଶ

ଶݎ݀ ൌ  ൬
ݖ݀
൰ݎ݀

ଶ ݀ଶ

ଶݖ݀ ൅
݀

ݖ݀ ൬
ݖ݀
൰ݎ݀

݀
ݖ݀ ൌ ቆ

ଶܯ4

ସݎ ቇ
݀ଶ

ଶ (7)ݖ݀

 
݀

ݎ݀ ൌ
ܯ2
ଶݎ

݀
(8)   ݖ݀

 
We replacing in corrected equations: 

 
ଶሺ1ݖ െ ሻସܴᇱᇱݖ ൅ ሺ1 െ ሻସܴᇱݖ ൅ 

൅ ൤4ܯଶݓଶ െ ൬ݖሺ1 െ ሻଶ݈ሺ݈ݖ ൅ 1ሻ ൅
൅ݖሺ1 െ ሻଷݖ ൰൨ ܴ ൌ 0   (9)

 
Now, we engage to investigate asymptotical behavior 

in 0 and 1 point. Where ݖ ՜ 0 by: 
 

ଶܴᇱᇱݖ ൅ ܴᇱ ൅ ൫4ܯଶݓଶ െ ሺ1 ൅ ݈ሺ݈ ൅ 1ሻݖሻ൯ܴ ൌ 0  (10)
 

݁ ܣ ~ܴ
೥൫షభషඥሺభషర൫షభష೗ష೗మశరಾమೢమ൯೥మሻ൯

మ೥మ ൅ 

൅ܤ ݁
೥൫షభశඥሺభషర൫షభష೗ష೗మశరಾమೢమ൯೥మሻ൯

మ೥మ  
(11)

 
and ݖ tends to 1, by dividing ሺ1 െ  ,ሻସ on total equationݖ
we have second equation (2) it is obtained that: 
 

ܴᇱᇱ ൅  ܴᇱ ൅ 

൅ ቈ
ଶݓଶܯ4

ሺ1 െ ሻସݖ െ ቆ
݈ሺ݈ ൅ 1ሻ
ሺ1 െ ሻଶݖ ൅

1
1 െ ቇ቉ݖ ܴ ൌ 0  (12)

III. Analytical Solution 
An analytic solution of the Regge-Wheeler (RW) 

equation has been found via the Frobenius methodat the 
regular singularity of the horizon 2M (ݖ tends to zero). 
Let us consider above equation. 

We start with define follow constants: 
 

ܣ ൌ ݈ ሺ݈ ൅ 1ሻ (13)
 

ܤ ൌ ଶ   (14)ݓଶܯ 4
 

ଶܴᇱᇱݖ ൅ ܴᇱ ൅ ሺܤ െ ሺ1 ൅ ሻܴݖሻܣ ൌ 0  (15)
 

By some calculations that are shown in appendix we 
achieve to explicit equation as follows: 

ܴ ൌ 

ൌ ܿ଴

ۏ
ێ
ێ
ێ
ێ
1 ۍ െ ݖଶݓଶܯ 4 ൅ ቀ൫ଵା௟ ሺ௟ାଵሻ൯

ଶ
൅ ଵ଺ெర௪ర

ଶ
ቁ ଶݖ ൅

െ ቌ

ଶ൫ଵା௟ ሺ௟ାଵሻ൯ସ ெమ௪మା൫ଶାସ ெమ௪మ൯
଺

 ൈ

ൈ
ቀ൫ଵା௟ ሺ௟ାଵሻ൯ାଵ଺ெర௪రቁ

଺

ቍ ଷݖ ൅ ڮ
ے
ۑ
ۑ
ۑ
ۑ
ې

 
(16)

 
In the second state that ݖ tends to one, equations are 

given by: 
 

ܴᇱᇱ ൅ ܴᇱ ൅ ൬
ܤ

ሺ1 െ ሻସݖ െ
ܣ

ሺ1 െ ሻଶݖ െ
1

1 െ ൰ݖ ܴ ൌ 0 (17)

 
Hence: 

 

ܴᇱᇱ ൅ ܴᇱ ൅ ൬
ܤ

ሺݖ െ 1ሻସ െ
ܣ

ሺݖ െ 1ሻଶ ൅
1

ݖ െ 1൰ ܴ ൌ 0 (18)

 
By some calculations that are shown in appendix we 

achieve to explicit equation as follows: 
 

ܴ ൌ ܿହ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ ቆ

4 ଶݓଶܯ

݈ ሺ݈ ൅ 1ሻ െ 6ቇ ଷݔ ൅ ହݔ ൅

൅ ൬
4

ଶሺ݈ ሺ݈ݓଶܯ 4 ൅ 1ሻ െ 6ሻ൰ ଺ݔ ൅

൅
ሺ݈ ሺ݈ ൅ 1ሻ െ 20ሻ

4 ଶݓଶܯ ଻ݔ ൅ ڮ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (19)

IV. Equations of Motion in Orbit 
We solve problem by supposing such potentials [7]: 
 

ܸሺݎሻ ൌ ቆ
݈ሺ݈ ൅ 1ሻ

ଶݎ ൅
ܯ2
ଷݎ ቇ ൬1 െ

ܯ2
ݎ ൰ ൌ 

ൌ
݈ሺ݈ ൅ 1ሻ

ଶݎ ൅ െ
ሺ݈ሺ݈ܯ2 ൅ 1ሻ െ 1ሻ

ଷݎ െ
ଶܯ4

ସݎ  
(20)

 
Equation of motion in the direction of “r” and “ߠ” are 

as follows: 
 

݉ ሷݎ െ ݉ ݎ ሶߠ ൌ ሻ (21)ݎሺܨ
 

݉ ݎ ሷߠ ൅ ሶߠሶݎ 2݉ ൌ 0    (22)
 

That we have form second equation: 
 

݀
ݐ݀ ൫݉ݎଶߠሶ൯ ൌ

ܮ݀
ݐ݀ ൌ 0 (23)

 
ܮ ൌ ሶߠଶݎ݉ ൌ 0 (24)

 

ߠ ൌ ଴ߠ ൅ ׬ ൬
ܮ

ଶ൰ݎ݉ (25) ݐ݀ 

 
But for first equation, by changing below variable, this 

equation becomes simpler to same extent: 
 

ݑ ൌ
1
(26) ݎ
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ݎ ൌ
1
(27)  ݑ

 
݀ଶݑ
ଶߠ݀ ൌ െݑ െ

݉
ଶݑଶܮ ܨ  ൬

1
൰ (28)ݑ

 
Now it is adequate to have potential equation and to 

obtain force for it is first derivative as follows: 
 

ܸሺݎሻ ൌ
݈ሺ݈ ൅ 1ሻ

ଶݎ െ
ሺ݈ሺ݈ܯ2 ൅ 1ሻ െ 1ሻ

ଷݎ െ
ଶܯ4

ସݎ  (29)
 

ܽ ൌ ݈ሺ݈ ൅ 1ሻ (30)
 

ܾ ൌ ሺ݈ሺ݈ܯ2 ൅ 1ሻ െ 1ሻ (31)
 

ܿ ൌ ଶ (32)ܯ4
 

ܸሺݎሻ ൌ
ܽ
ଶݎ െ

ܾ
ଷݎ െ

ܿ
ସ (33)ݎ

 

ሻݎሺܨ ൌ
ܸ݀
ݎ݀ ൌ

െ2ܽ
ଷݎ ൅

3ܾ
ସݎ ൅

4ܿ
ହݎ  (34)

 

ܨ ൬
1
൰ݑ ൌ  െ2ܽ ݑଷ ൅ ସݑ 3ܾ ൅ ହ (35)ݑ 4ܿ

 
݀ଶݑ
ଶߠ݀ ൌ െݑ െ

݉
ଶݑଶܮ ሺെ2ܽ ݑଷ ൅ ସݑ 3ܾ ൅ ହሻ (36)ݑ 4ܿ

 
݀ଶݑ
ଶߠ݀ ൌ െݑ െ

݉
ଶܮ ሺെ2ܽ ݑ ൅ ଶݑ 3ܾ ൅ ଷሻݑ 4ܿ ൌ 

ൌ െݑ ቀ1 ൅ ଶ௔௠
௅మ ቁ െ ଷ௕௠

௅మ Uଶ െ ସ௠௖
௅మ   ଷݑ

(37)

 
݀ଶݑ
ଶߠ݀ ൅ ݑ ൬1 ൅

2ܽ݉
ଶܮ ൰ െ

3ܾ݉
ଶܮ ଶݑ ൅

4݉ܿ
ଶܮ ଷݑ ൌ 0 (38)

 
That contrary to investigate equation in analytical 

mechanics, it consists of second and third power of [5] ݑ. 

V. The Equation of a Point Mass in 
Schwarzschild Black Hole 

The metric for such a black hole is of the form: 
 

ଶݏ݀ ൌ ܿଶሺ1 ൅ ݂ሻ݀ݐଶ െ ሺ1 ൅ ݄ሻ݀ݎଶ ൅ 
െݎଶ݀ߠଶ െ (39)   ߮݀ ߠଶܵ݅݊ଶݎ

 
Other equation becomes: 

 

ሷݐ ൅
݂ᇱ

1 ൅ ݂ ሶݐሶݎ ൌ 0 (40)

 

ሷݎ ൅
ܿଶ

2 ݂ᇱሺ1 ൅ ݂ ሻݐሶ െ
݂ᇱ

2ሺ1 ൅ ݂ሻ ଶሶݎ ൅ 

– ሺ1ݎ ൅ ݂ሻ൫ߠሶ ଶ ൅  ܵ݅݊ଶߠ ሶ߮ ଶ൯ ൌ 0  
(41)

 

ሷߠ ൅
2
ݎ ሶߠሶݎ െ ሶ߮ ߠݏ݋ܥߠ݊݅ܵ ൌ 0 (42)

ሷ߮ ൅
2
ݎ ሶݎ ሶ߮ ൅ 2 ሶߠߠݐ݋ܥ ሶ߮ ൌ 0 (43)

 
We used a variation equation on ௗ

ௗ௞
 coordinate: 

 

ሶݐ ൌ
ݐ݀
݀݇ ൌ

ܽ
1 ൅ ݂ (44)

 
ଶݎ ሶ߮ ܵ݅݊ଶߠ ൌ ܾ (45)

 
In which ܽ and ܾ are integral constants [6]. 

VI. Motion in the Planar Orbit 
We want to consider the motion in planar orbit in 

ߠ ൌ గ
ଶ
. Equation (42) shows that if primary condition is 

ߠ ൌ గ
ଶ
 and ߠሶ ൌ 0 so always we will have ߠሷ ൌ 0 and 

particle continues to orbitmovement in this page and 
particle stays in the plane ߠ ൌ గ

ଶ
. Now we write 

Schwarzschild metric for movement in ߠ ൌ గ
ଶ
, and we 

take development of geodesic length of ݀ݏas ݀݇ path 
parameters. Hence by choice  ݀݇ ൌ  equation (46) , ݏ݀
becomes equation (47): 
 

ଶݏ݀ ൌ ܿଶ ൤1 െ
ܩܯ2
ܿଶݎ ൨ ଶݐ݀ െ ଶݎ݀ ൤1 െ

ܩܯ2
ܿଶݎ ൨

ିଵ

൅ 

െݎଶ ቀ݀ߠଶ ൅ ܵ݅݊ଶߠ ݀߮
ଶ

ቁ 
(46)

 

1 ൌ ܿଶ ൤1 െ
ܩܯ2
ܿଶݎ ൨ ଶሶݐ െ

Rሶ ଶ

ቂ1 െ ଶெீ
௖మ௥

ቃ
െ ଶݎ ሶ߮ ଶ (47)

 
By invoking equation (44) in equation (47), remove ݐሶ 

and use of equation (45) we write: 
 

൬
ݎ݀
൰ݏ݀ ൌ ቆ

ଶݎ

ܾ ቇ ቆ
ݎ݀
݀߮

ቇ (48)

 
By using this relation we remove ݎሶ  from equation 

(45): 
 

ܾଶ

ସݎ ቆ
ݎ݀
݀߮

ቇ
ଶ

ൌ ܿଶܽଶ െ ൬1 െ
ܩܯ2
ܿଶݎ ൰ ቆ1 ൅

ܾଶ

ଶቇ (49)ݎ

 

By replace ൌ ଵ
௥
, equation (49) can be written as 

follows: 
 

ቆ
ݎ݀
݀߮

ቇ
ଶ

ൌ
ܿଶܽଶ

ܾଶ െ
1

ܾଶ ൬1 െ
ܩܯ2

ܿଶ ൰ݑ ሺ1 ൅ ܾଶݑଶሻ (50)

 

ቆ
ݎ݀
݀߮

ቇ
ଶ

ൌ
ܿଶܽଶ

ܾଶ െ ൬
1

ܾଶ ൅ ଶݑ െ
ܩܯ2
ܿଶܾଶ ݑ െ

ܩܯ2
ܿଶ ଷ൰ (51)ݑ

 
The above equation can be simplified by deriving on 

߮: 
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݀ଶݑ

݀߮
ଶ

ݑ݀
݀߮

ൌ െ ൬ݑ െ
ܩܯ

ܿଶܾଶ െ
ܩܯ3

ܿଶ ଶ൰ݑ
ݑ݀
݀߮

 (52)

 
The state of ௗ௨

ௗఝ
 is related to the solution for a circular 

orbit. We want consider elliptically orbit. 
So ௗ௨

ௗφ
് 0 and hence we divide above equation on  ௗ௨

ௗφ
 to 

attain below relation: 
 

݀ଶݑ

݀߮
ଶ ൅ ݑ ൌ

ܩܯ
ܿଶܾଶ ൅

ܩܯ3
ܿଶ ଶ (53)ݑ

 
The above equation will be changed to Newton 

equation for an elliptically orbit without term ଷெீ
௖మ  .ଶݑ

The answer of Newton equation is as follows: 
 

ݑ ൌ
ܩܯ

ܿଶܾଶ ൣ1 ൅ ൫߮ݏ݋ܥ ݁ െ ߮଴൯൧ (54)

 
That is ݁ exit from the center of orbit (݁ ൌ ௙

ଶ௔
 and  ݂  

is the distance between two focuses and ܽ is the half of 
big diameter length in ellipse). By using this 
approximation in which ݑଶ is replacing by disordered 
solution in right side and we can solve equation (53): 
 

݀ଶݑ

݀߮
ଶ ൅ ݑ ൌ

ܩܯ
ܿଶܾଶ ൅

ଷܩଷܯ3

ܿ଺ܾସ ൣ1 ൅ ൫߮ݏ݋ܥ ݁ െ ߮଴൯൧
ଶ
 (55)

 
An approximate solution for above equation is as 

follows: 
 

ݑ ൌ
ܩܯ

ܿଶܾଶ ൣ1 ൅ ൫߮ݏ݋ܥ ݁ െ ߮଴ െ ∆߮൯൧ (56)
 
Circle if e = 0, ellipse if 0 ≤ e < 1 (as for planets 

orbiting the Sun). Perihelion (closest approach to Sun) 
occurs when ߮ ൌ ߮଴ ൅ ∆߮: 

 

∆߮ ൌ ቆ
ଶܩଶܯ2

ܿସܾଶ ቇ ߮ (57)
 

And we disregarded from sentences larger than second 
power of  ெீ

௕మ௖మ , actually we can suppose it the correction. 

VII.   Potential Form 
By finding derivation roots and placing it on second 

derivative we can find concavity direction: 
 

ܸ݀
ݎ݀ ൌ

െ2ܽ
ଷݎ ൅

3ܾ
ସݎ ൅

4ܿ
ହݎ  (58)

 

ଵݎ ൌ െ
െ3ܾ െ √9ܾଶ ൅ 32 ܽܿ 

4ܽ  (59)

 

ଶݎ ൌ െ
െ3ܾ ൅ √9ܾଶ ൅ 32 ܽܿ 

4ܽ  (60)

݀ଶܸ
ଶݎ݀ ൌ

6ܽ
ସݎ െ

12ܾ
ହݎ െ

20ܿ
଺ݎ  (61)

 
By setting ݎଵand ݎଶ in above equation it is conclude 

that we have two concaves in two directions. 
1. For the first quantum state having  ݈ ൌ 0 , ܽ ൌ

0 hence 9ܾଶ ൅ 32ܽܿ ൌ 9ܾଶ, so for lowest angular 
momentum, potential curve ܸሺݎሻ decrease towards 
origin. There is a not minimum radial distances and 
all orbits pass through origin (ݎ ൌ െ ଺௕

଴
 ሻ . 

2. For follow region : 
 

9ܾଶ ൅ 32 ܽܿ ൌ 1 ൅
3.5ܽܿ

ܾଶ     ,    
3.5ܽܿ ൌ ܾଶ , ݔ ൌ ݈ሺ݈ ൅ 1ሻ 

(62)

 
ݔ ൌ ݈ሺ݈ ൅ 1ሻ ൏ 

൏
3.5ܿ െ 8݉ଶ േ ට56 ݉ଶܿ ൅ ସଽ

ସ
ܿଶ

8݉ଶ ൌ Ъ 
(63)

 
 For this region of angular momentum, always 

potential ܸሺݎሻ is negative and in similar ݎଵand ݎଶ by 
selecting positive and negative sign in their equations 
have two minimum and maximum. Particles that their 
 ଶሻ are located inݎଵሻ and ܸሺݎenergy are between ܸሺ ܧ
closed elliptical orbit. 

3. If ݔ ൐ Ъ, as is shown in Figure 1, the picture 
potential curve have ܸሺݎሻ positive 
maximum.Particles having this angular momentum 
and positive energy -ܧ ൐ 0 – lower than maximum 
ܸሺݎሻ will not reach to origin. 

4. Also particle in ݎଵ situation is in unstable condition 
and in situation ݎଶ it has stable condition. 
 

 
 

Fig. 1. HypotheticalPotential shape and their extremum 

VIII.    WKB Approximation 
This technique, originally in the form suggested by 

Schutz and Will, based on elementary quantum 
mechanical arguments, was later developed into 
apowerful technique with which accurate results have 
been derived [8]. 

We want inspect the transmittance probability of 
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particle by using WKB approximation, it was given by: 
 

|ܶ |ଶ ؄ ݌ݔ݁ ቎ െ2 න ݎ݀ ඨ2μ

԰ଶ ሺܸሺݎሻ െ ሻܧ
௥

௥బ

቏ (64)

 
By substituting potential equation in above equation, 

we have: 
 

|ܶ |ଶ

؄ ݌ݔ݁

ۏ
ێ
ێ
ۍ
 െ2 න ඩ ݎ݀

2μ

԰ଶ ൭൬
ܽ
ଶݎ െ

ܾ
ଷ൰ݎ ൬1 െ

ܯ2
ݎ ൰ ൅

െܧ
൱

௥

௥బ
ے
ۑ
ۑ
ې (65)

 
ܽ ൌ ݈ሺ݈ ൅ 1ሻ,   ܾ ൌ  ܯ2

 
µ is mass of particle in relations. 

We can compute above mentioned integral asshown, 
but weknew, it is not a surprise because, at the present do 
not guess a general form for WKB. Do you attain to a 
physical agreement between classical and quantum 
answers? Yes, according to Heisenberg uncertainty 
principle, this the relation attained in the field of 
discussion about wave packet. In quantum mechanics, in 
a state in which the momentum is certainly ݌ the 
probability |൏ ݌ളݎ ൐|ଶ of finding the particle at point 
 the position is then completely ,ݎ  is independent of ݎ
uncertain. 

Similarly if the position of the particle is certainly at ݎ 
the probability |൏  ൐|ଶ of finding the particle to ݎള݌
have momentum ݌ isindependent of ݌ , as so momentum 
is uncertain. Since quantum functions are none-localized 
thus deal to probability. But, manner of the wave packet 
is more controllable and it has set in special a limit that is 
localized. As that we have carried out in the Klein-
Gordon equation answers and we considered them as a 
series of answers, series as discrete integral pointing to 
wave packet in relations. Also the relation of the 
transmission coefficient is the word that is not acceptable 
with classical model. In the limit relation that the angular 
momentum is very big (quantum number ݈ is great) this 
relation equal zero: 

 

| ܶ |ଶ ؄ ݈݅݉
௟՜ஶ

݌ݔ݁ ൥െ ට
μ

2԰ଶ ሾ  ݂ሺݎሻሿ൩ ൌ
1

ሾ∞ሿ݌ݔ݁ ൌ 0 (66)

IX. Conclusion 
Let us now summarize the findings in the present 

paper. In this paper we consider the equation related to 
Klein-Gordon and it is get after separation of variables 
method. In fact I will reveals for ݎ tends to 2ܯ and ∞. 
Thus, we can consider the motions in these regions, 
which are useful. Also, by used method wereach to 
convergent equations that removed some of ambiguities 
appear in prior equations. In continuance we calculated 
equations of motion in orbit and finally we reach to a 

nonlinear equation that is not closed and it has two 
asymptotic curves. Also, we find equations of motion in 
planar orbit mentioned equation is an additive correction 
to constant rate in φ or it is spin motion in Perihelion 
orbit situation, as we observed it is correct for a planet. It 
was shown that transmittance coefficient was related the 
quantum concepts. But, it is most important for Hawking 
radiation and entropy, absorption and so on. We do not 
mention them. Hawking has argued that while black 
holes may be created by classical collapse, their 
disintegration is a quantum phenomenon. We provided 
simple expressions for the WKB approximation for 
tunneling. 

Appendix 
i. Calculations for Equation 

We consider answer as below square series: 
 

ܴ ൌ ܿ଴ ൅ ܿଵݖ ൅ ܿଶݖଶ ൅ ڮ ൅ ܿ௡ݖ௡ ൅  ڮ
 
In the state that ݖ tends to zero, equations are given 

by: 
 

ܴᇱ ൌ ܿଵ ൅ 2 ܿଶݖ ൅ 3 ܿଷݖଶ ൅ ڮ ൅ ݊ܿ௡ݖ௡ିଵ ൅  ڮ
ܴᇱᇱ ൌ 2 ܿଶ ൅ 3 כ 2  ܿଷݖ ൅ ڮ ൅ ݊ሺ݊ െ 1ሻܿ௡ݖ௡ିଶ ൅  ڮ
 
By substituting above: 
 
2 ܿଶ ݖଶ ൅ 3 כ 2  ܿଷݖଷ ൅ ڮ ൅ ݊ሺ݊ െ 1ሻܿ௡ݖ௡ ൅ ڮ ܿଵ

൅ 2 ܿଶݖ ൅ 3 ܿଷݖଶ ൅ ڮ ൅ ݊ܿ௡ݖ௡ିଵ ൅ ڮ
൅ ଴ܿܤ ൅ ݖଵܿܤ ൅ ଶݖଶܿܤ ൅ ڮ ൅ ௡ݖ௡ܿܤ

൅ ڮ െ ሺ1 ൅ ݖሻܿ଴ܣ െ ሺ1 ൅ ଶݖሻܿଵܣ

െ ሺ1 ൅ ଷݖሻܿଶܣ െ ڮ െ ሺ1 ൅ ௡ାଵݖሻܿ௡ܣ

െ ڮ ൌ 0 
2 ܿଶ ݖଶ ൅ 3 כ 2  ܿଷݖଷ ൅ ڮ ൅ ݊ሺ݊ െ 1ሻܿ௡ݖ௡ ൅ ڮ ܿଵ

൅ 2 ܿଶݖ ൅ 3 ܿଷݖଶ ൅ ڮ ൅ ሺ݊
൅ 1ሻܿ௡ାଵݖ௡ ൅ ڮ ൅ ଴ܿܤ ൅ ݖଵܿܤ
൅ ଶݖଶܿܤ ൅ ڮ ൅ ௡ݖ௡ܿܤ ൅ ڮ
െ ሺ1 ൅ ݖሻܿ଴ܣ െ ሺ1 ൅ ଶݖሻܿଵܣ

െ ሺ1 ൅ ଷݖሻܿଶܣ െ ڮ െ ሺ1 ൅ ௡ݖሻܿ௡ିଵܣ

െ ڮ ൌ 0 
 

Coefficient of z଴ :     ܿଵ ൌ െܿܤ଴ 
Coefficient of zଵ :     ܿଶ ൌ ሺଵା஺ሻ௖బି஻௖భ

ଶ
 

Coefficient of zଶ :     ܿଷ ൌ ሺଵା஺ሻ௖భିሺଶା஻ሻ௖మ
ଷ

 

Coefficient of zଷ :     ܿସ ൌ ሺଵା஺ሻ௖మିሺଶכଷି஻ሻ௖య
ସ

 

Coefficient of z୬ :     ܿ௡ାଵ ൌ ሺଵା஺ሻ஼೙షభିሺ௡כሺ௡ିଵሻି஻ሻ஼೙
௡ାଵ

 
 
Thus: 
 

ܿ௡ାଵ ൌ
ሺ1 ൅ ௡ିଵܥሻܣ െ ሺ݊ כ ሺ݊ െ 1ሻ െ ௡ܥሻܤ

݊ ൅ 1  
 
Eventually we achieve to explicit equation, as shown 

below: 
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ܴ ൌ ܿ଴ ൅ ܿଵݖ ൅ ܿଶݖଶ ൅ ڮ ൅ ܿ௡ݖ௡ ൅ ڮ ݖ    ,     ൌ 1 െ
ܯ2

ݎ  

ܴ ൌ ܿ଴ ቈ 1 െ ݖܤ ൅ ቆ
ሺ1 ൅ ሻܣ ൅ ଶܤ

2 ቇ ଶݖ

െ ቆ
2ሺ1 ൅ ܤሻܣ ൅ ሺ2 ൅ ሻܤ

6

ൈ
൫ሺ1 ൅ ሻܣ ൅ ଶ൯ܤ

6
൰ ଷݖ ൅ ڮ ቉ 

ii. Calculation for Equation 

We defined series: 
 

ܴ ൌ ∑ܿ௠ݔ௠ 
 
We change variable as below: 
 

ݖ െ 1 ൌ ,   ݔ
ܴ݀
ݖ݀ ൌ

ܴ݀
ݔ݀   ,

݀ଶܴ
ଶݖ݀ ൌ

݀ଶܴ
ଶݔ݀  

ܴᇱᇱ ൅ ܴᇱ ൅ ൬
ܤ
ସݔ െ

ܣ
ଶݔ ൅

1
൰ݔ ܴ ൌ 0 

ܴ ൌ ܿ଴ ൅ ܿଵݔ ൅ ܿଶݔଶ ൅ ڮ ൅ ܿ௠ݔ௠ ൅  ڮ
ܴᇱᇱ ൅ ܴᇱ ൅ ሺିݔܤସ െ ଶିݔܣ ൅ ଵሻܴିݔ ൌ 0 

ܴᇱ ൌ ݉ ෍ ܿ௠ݔ௠ିଵ  ,

ܴᇱᇱ ൌ  ݉ ሺ݉ െ 1ሻ ෍ ܿ௠ݔ௠ିଶ  
 
By substituting above: 
 

2 ܿଶ ൅ 3 כ 2  ܿଷݔ ൅ ڮ ൅ ݉ሺ݉ ൅ 1ሻܿ௠ାଵݔ௠ିଵ ൅ ڮ ܿଵ
൅ 2 ܿଶݔ ൅ 3 ܿଷݔଶ ൅ ڮ ൅ ݉ܿ௠ݔ௠ିଵ

൅ ڮ ൅
ܿ଴ܤ
ସݔ ൅

ଵܿܤ

ଷݔ ൅
ܿଶܤ
ଶݔ ൅ ڮ

൅ ௠ିଵݔ௠ାଷܿܤ ൅ ڮ
െܿܣ଴

ଶݔ െ
ଵܿܣ

ݔ െ ଶܿܣ

െ ڮ െ ௠ିଵݔ௠ାଵܿܣ െ ڮ ൅
ܿ଴

ݔ ൅ ܿଵ

൅ ܿଶݔ ൅ ڮ ൅ ܿ௠ݔ௠ିଵ ൅ ڮ ൌ 0 
 
Coefficient of ଵ

୶ర : 
ܿ଴ܤ ൌ 0 , ܤ ് 0 , ܿ଴ ൌ 0 

 
Coefficient of ଵ

୶య : 
ଵܿܤ ൌ 0, ܿଵ ൌ 0 

 
Coefficient of ଵ

୶మ : 
ܿଶܤെܿܣ଴ ൌ 0, ܿଶ ൌ 0 

 
Coefficient of ଵ

୶
 : 
െܿܣ଴ ൌ ܿ଴, ܣ ് 0, ܿ଴ ൌ 0 

 
Coefficient of ݔ଴ :  

2 ܿଶ ൅ ܿଵ ൅ ସܿܤ െ ଶܿܣ ൅ ܿଵ ൌ 0, ܿସ ൌ 0 
 
Coefficient of : 

3 כ 2  ܿଷ ൅ 2 ܿଶ ൅ ହܿܤ െ ଷܿܣ ൅ ܿଶ ൌ 0   , ܿଷ ൌ
ହܿܤ

ܣ െ 6 
Coefficient of ݔଶ : 

12ܿସ ൅ 3 ܿଷ ൅ ଺ܿܤ െ ସܿܣ ൅ ܿଷ ൌ 0  , ܿ଺ ൌ
4ܿହ

ܣሺܤ െ 6ሻ 

 
Coefficient of ݔଷ : 

20ܿହ ൅ 4ܿସ ൅ ଻ܿܤ െ ହܿܣ ൅ ܿସ ൌ 0  ,   ܿ଻ ൌ
ሺܣ െ 20ሻܿହ

ܤ  
 

෍ሺ ݉ ሺ݉ െ 1ሻܿ௠ݔ௠ିଶ ൅ ݉ܿ௠ݔ௠ିଵ ൅ ௠ିସݔ௠ܿܤ

െ ௠ିଶݔ௠ܿܣ ൅ ܿ௠ݔ௠ିଵሻ ൌ 0 
෍ሺ ݉ሺ݉ ൅ 1ሻ ܿ௠ାଵ  ൅ ݉ܿ௠ ൅ ௠ାଷܿܤ െ ௠ାଵܿܣ

൅ ܿ௠ݔ௠ିଵሻݔ௠ିଵ ൌ 0 
݉ሺ݉ ൅ 1ሻܿ௠ାଵ ൅ ݉ܿ௠ ൅ ௠ାଷܿܤ െ ௠ାଵܿܣ ൅ ܿ௠ ൌ 0 
 
Now, we have reversion relation: 
 

ܿ௠ାଷ ൌ
ሺ݉ሺ݉ ൅ 1ሻെܣሻܿ௠ାଵ ൅ ሺ݉൅1ሻܿ௠ሻ

ܤ  
 
We achieve to explicit equation for second equation, 

as shown below: 
 

ܴ ൌ ܿ଴ ൅ ܿଵݔ ൅ ܿଶݔଶ ൅ ڮ ൅ ܿ௠ݔ௠ ൅ ڮ

ൌ 0 ൅ 0 ൅ 0 ൅ ൬
ହܿܤ

ܣ െ 6൰ ଷݔ ൅ 0 ൅ ܿହݔହ

൅ ൬
4ܿହ

ܣሺܤ െ 6ሻ൰ ଺ݔ ൅
ሺܣ െ 20ሻܿହ

ܤ ଻ݔ ൅  ڮ

ܴ ൌ ܿହሾ൬
ܤ

ܣ െ 6൰ ଷݔ ൅ ହݔ ൅ ൬
4

ܣሺܤ െ 6ሻ൰ ଺ݔ ൅
ሺܣ െ 20ሻ

ܤ ଻ݔ

൅ ڮ ሿ 
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Modeling of Damage in the Behavior of Fiber-Matrix Interface 
of a Composite Material with a Genetic Algorithm 

 
 

Allel Mokaddem, Ahmed Boutaous 
 
 
Abstract – The objective of this work is to develop an analytical model to evaluate the influence 
of thermal stress on the damage of the fiber-matrix interface composite material T300/914; from 
the properties of the fiber, matrix and interfacial bonding characteristics. The model takes into 
account the effects of temperature that result in the gradual deterioration of the fiber-matrix 
interface. This study developed a genetic algorithm has shown the influence of heat stress beyond 
a critical threshold of damage to the interface, and also showed that the gradual deterioration of 
the matrix has a greater influence on the damage of the interface compared to that of the fiber. 
Copyright © 2011 Praise Worthy Prize S.r.l. - All rights reserved. 

 
Keywords: Composite, Interface, Fiber, Matrix, Shear, Thermal Stress, Damage 
 
 

I. Introduction 
The number and complexity of the mechanical tests 

required for the development of an industrial project 
related to the verification of the mechanical properties of 
materials used to obtain reliable results by numerical 
simulation. Indeed, the objective of this contribution is to 
highlight the evolution of the influence of thermal stress 
on the damage of the fiber matrix interface of a 
composite (T300/914) by genetic algorithm. In a 
composite material, damage to the matrix and the fibers 
break the following characteristics Lissart [3]: 
 - Cracks in the matrix generated by unidirectional 
tensile stresses are distributed in a  completely random, 
according to the distribution of microstructural defects;  
 - During the rupture of a fiber within the yarn, the 
stress borne by the broken fiber is distributed equally on 
all surviving fibers;  
 - The ruin of the composite is reached for a critical 
rate of broken fibers. 

In this work, we developed an analytical model using 
a genetic algorithm. The static model described below, 
shows the gradual degradation of the matrix and fiber 
damage to the fiber-matrix interface is based on the Cox 
[1]. 

II. Development 
II.1. Definitions 

Damage to the matrix, when the stress is uniform, is 
given by formula (1) Weibull [4]: 

 

 
0

1
mmT

m
m m

m
D exp V

σ σ
σ

⎧ ⎫⎡ ⎤+⎪ ⎪= − − ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (1) 

with: 
 ( )σ : applied stress; 

 ( )T
mσ : heat stress; 

 ( )mV : the volume of the matrix; 

 ( )0m mm etσ : Weibull parameters. 
After creation of a crack, a fragment of length L will 

give rise to two fragments of size L = L1 and L2 = X · L · 
(1-X) (X being a random number between 0 and 1). At 
each crack up a fiber, a fiber-matrix debonding length 2l 
will occur with a corollary decrease of creating a new 
crack in part because the matrix unloaded. At each 
increment of stress, the break is calculated. All blocks 
which break reaches 0.5 give rise to new cracks. A 
broken fiber is discharged along its entire length Lissart 
[3]. That is to say it cannot break once. The rupture 
follows a law similar to that described for the matrix: 

 

 
0

1
fmf

max
f f equi

f
D exp A L

σ
σ

⎧ ⎫⎡ ⎤⎪ ⎪= − − ⋅ ⋅ ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (2) 

 

with: 
  ( f

maxσ ) : The maximum stress applied 
 (Lequi) : is the length of the fibers would have the same 

break in a consistent manner. 

II.2. Interface Behavior 

Interfacial shear stress τ reflects the transfer of forces 
through the fiber-matrix debonding. The corresponding 
stress field in a composite is depicted in Figure 1. The 
applied load is fully supported by the fibers at the cracks 
over a length 2l0 gradient linear constraint exercised in 
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adjacent regions of the decohesion length 2l. 

II.3. Thermal Stresses 

The field of thermal stresses resulting from 
differential expansion of the fiber and matrix during 
cooling after preparation of the composite at high 
temperature. It is given by the following equations 
Lebrun [2]: 
 

 ( )2 01
T
f f

aE M M
a

σ = −
+

 (3) 

 

 

( ) ( )

( ) ( )
0

0

0

2

eT

m f
T

T

m f
T

M T dT

M T dT

α α

α α

= −

= −

∫

∫
 (4) 

 
T0 room temperature, the temperature Te of 

development, T the test temperature and finally αf αm and 
expansion coefficients of the fiber and matrix. 

So it would be interesting to see the influence of 
thermal stress on the damage of the interface based on 
the Cox [1]: 
 

 2
1

2

2 m

f f
f

G

RE r ln
r

β =
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (5) 

 

 ( )1 1 22
fE a lth
ε

τ β β=  (6) 

 
with: 
  ( mG ) : shear modulus of the matrix; 

 ( fE ) : Young's modulus of the fiber;  
 ( ε ) : déformation ; 
 (a) : radius of the fiber;  
 ( R ) : half the distance;  
 (τ ) : shear stress of the interface. 

III. Numerical Simulation                                 
by a Genetic Algorithm 

III.1. Development 

Our job is to maximize the damage of fiber-matrix 
interface of composite carbon / epoxy (T300/914) by a 
genetic algorithm using an analytical model based on the 
theory of Cox. 

The principle of this algorithm relies on the use of 
genetic operators to evolve a population of individuals 
randomly generated number 100 with a maximum 
generation equal to 50 as stopping criterion.  

The genes of the chromosome represent the following 
variables: the mechanical stress which is between 0 and 
defined as the maximum stress tests stress, the 
temperature varies between To = 30°C and the 
temperature of preparing the epoxy matrix Te = 150°C, 
the thermal stress generated is calculated using the 
formula (3) taking into account the expansion 
coefficients of carbon fibers and epoxy matrix. Then a 
selection operator (linearly by dividing the odds by rank 
individuals in the population, these individuals are 
ranked and positioned to make the best of them is 
inserted in the front row and one whose quality is lower 
in rank or k = N). This allows parents to select who will 
then be crossed via a crossover operator. 

The 'children' are modified resulting in a random 
probability defined at the outset (probMut = 0.5) and 
thus form a new generation, the process is repeated until 
convergence. 

 

Stress in the fiber

Stress in the matrix

Decohesion : 2l

 

 
Fig. 1. Profile of a constraint in the vicinity of a fiber 
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Initial value: 
NPOP: 100 
Gmax: 50 
Te: 150 C ° 
To: 30 C ° 
Am: π * rf 2 
P: 0.5 

Assessment of individuals: Objective Function 
Formulas (3,4,5 and 6) 

  (σ, Gm, Ef, RF, Em, R, σ, T, To, Em, αm, αf, Vm, Am, Lequis) 

Fibre function, formula (2) 
(σ, Am Lequis) 

Function matrix, formula (1) 
  (σ, T, To, Em, αm, αf, vm) 

Random generation of initial population 
(Variables: (σ)> 0 and Te ≥ (T) ≥ To 

Number of individual nPop 

Crossing 

Selection of Individuals 
(Roulette) 

Mutation (P) 

Construction of the new 
generation 

Gmax 

End 

Yes  

No 

 
 

Fig. 2. The flowchart of genetic algorithm 
 

IV. Simulation Results 
The data used in the simulation by a genetic algorithm 

(GA) are Young's modulus of the fiber, the shear 
modulus of the matrix, the fiber length, the radius of the 
fiber, the coefficients of thermal expansion, thermal 
stress and mechanical stress. 

It was noted the influence of mechanical stress on the 
damage of the matrix T300/914 (Fig. 3), and found the 
same way that heat stress at a great influence on the 

progressive degradation of the matrix (Figure 4). 
Figure 5 shows the influence of mechanical stress on 

the damage of the fiber, we found that damage to the 
matrix is more important compared to the damage of the 
fiber. 

We conclude that thermal stress beyond a critical 
threshold to a great influence on the damage of the 
interface, and it is perfectly linked to damage of the 
matrix and less important compared to the damage to the 
fiber (Fig. 6). 
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Fig. 3. Influence of mechanical stress on the damage of the matrix 
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Fig. 4. Influence of heat stress on the damage of the matrix 
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Fig. 5. Influence of heat stress on the damage of the fiber 
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Fig. 6. Influence of thermal stress on the damage 

of the fiber-matrix interface 

V. Conclusion 
Our simulation model by a genetic algorithm has 

shown that thermal stress beyond a critical threshold 
induces a rapid and severe damage of the interface, and 
that damage to the interface is much more linked to the 
progressive degradation matrix to damage the fiber. We 
plan to validate this model by experimental 
measurements on materials more sensitive to high 
temperature. 
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Effect of Initial Stress on Rayleigh Waves 
in a Thermoelastic Granular Medium 

 
 

G. A. Yahya1,2 

 
 
Abstract – In this paper, we study the effect of initial stress and coupled thermoelastic parameter 
ε on the propagation of Rayleigh waves in a granular medium under incremental thermal stresses. 
We also obtain the frequency equation, in the form of a twelfth-order determinantal expression. 
The numerical solution of the frequency equation has been obtained. The results represented 
graphically. The results indicate that the effect of initial stress and coupled parameter are very 
pronounced. Copyright © 2011 Praise Worthy Prize S.r.l. - All rights reserved. 
 
Keywords: Rayleigh Waves, Thermoelastic Waves, Granular Medium, Frequency Equation, 

Initial Stress 
 

 

I. Introduction 
The dynamical problem in granular media of 

generalized magneto-thermoelastic waves has been 
studied in recent times, necessitated by its possible 
applications in soil mechanics, earthquake science, 
geophysics, mining engineering and plasma physics, etc. 
The granular medium under consideration is a 
discontinuous one and is composed of numerous large or 
small grains. Unlike a continuous body each element or 
grain cannot only translate but also rotate about its center 
of gravity. This motion is the characteristic of the 
medium and has an important effect upon the equations 
of motion to produce internal friction It was assumed that 
the medium contains so many grains that it will never be 
separated from each other during the deformation and 
that each grain has perfect thermo-elasticity. The effect 
of the granular media on dynamics was pointed out by 
Oshima [1]. The dynamical problem of a generalized 
thermo-elastic granular infinite cylinder under initial 
stress has been illustrated by El-Naggar [2]. Rayleigh 
wave propagation of thermo-elasticity or generalized 
thermo-elasticity was pointed out by Dawan and 
Chakraporty [3]. Rayleigh waves in a magneto-elastic 
material under the influence of initial stress and a gravity 
field were discussed by Abd-Alla et al. [4] and El-
Naggar et al. [5]. Rayleigh waves in a thermo-elastic 
granular medium under initial and influence of gravity on 
the propagation of waves in granular medium are 
analytically discussed by Ahmed [6] respectively. Abd-
Alla and Ahmed [7] discussed the problem of Rayleigh 
wave propagation in an orthotropic medium under 
gravity and initial stress. Magneto-thermoelastic problem 
in rotating non-homogeneous orthotropic hollow cylinder 
under the hyperbolic heat conduction model is discussed 
by Abd-Alla and Mahmoud [8]. Wave propagation in a 
generalized thermo-elastic solid cylinder of arbitrary 
cross-section is discussed by Venkatesan and Ponnusamy 

[9]. Some problems discussed the effect of rotating of 
different material. 

Thermoelastic wave propagation in a rotating elastic 
medium without energy dissipation studied by 
Roychoudhuri and Bandyopadhyay [10]. Sharma and 
Grover [11] are studied the body wave propagation in 
rotating thermoelastic media. Thermal stresses in a 
rotating non-homogeneous orthotropic hollow cylinder 
were discussed by El-Naggar et al. [12]. Abd-Alla, et al. 
[13] investigated the numerical solution of magneto-
thermoelastic problem non-homogeneous isotropic 
material. Propagation of Rayleigh waves in an elastic 
half-space of orthotropic material was studied by Abd-
Alla [14]. 

On generalized magneto-thermoelastic Rayleigh 
waves in a granular medium under the influence of 
agravity field and initial stress were investigated by Abd-
Alla, et al. [15]. 

The aim of this paper is to investigate, the effect of 
initial stress and coupled thermoelastic parameter on 
propagation of Rayleigh waves in a thermo-elastic 
granular medium. 

General solution is obtained by using Lame’ potential. 
The frequency equation of Rayleigh waves is obtained in 
the form of a determinant. Dispersion curves are 
computed numerically for a specific model and presented 
graphically. The results indicate that the effect of initial 
stress and coupled parameter are very pronounced 

II. Formation of the Problem 
Consider a system of orthogonal Cartesian axes x1, x2, 

x3 such that the interface and the free surface of the 
granular layer resting on the granular half-space of 
different material are the planes x3 = H and x3 = 0, 
respectively, the origin O is any point on the free surface, 
x3- axis is positive in the direction towards the exterior of 
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the half-space, and the x1-axis is positive along the 
direction of Rayleigh waves propagation. 

The state of deformation in the granular medium is 
described by the displacement vector U(u1,0,u3) of the 
centre of gravity of a grain and the rotation vector ξ(ξ, η, 
ζ) of the grain about its centre of gravity.  

There exist a stress tensor and stress couple and are 
non-symmetric, that is: 

 
߬௜௝ ്  ௝߬௜  , ௜௝ܯ ് ݅   ௝௜ܯ ൌ 1, 2, 3 (1)

 
The stress tensor τij can be expressed as the sum of 

symmetric and ant-symmetric tensors: 
 

߬௜௝ ൌ ௜௝ߪ  ൅ ௜௝ߪ
 ,  (2)

 
where: 
 

௜௝ߪ ൌ
1
2 ൫߬௜௝ ൅ ௝߬௜൯  , ௜௝ߪ

 , ൌ
1
2 ൫߬௜௝ െ ௝߬௜൯ (3)

 
The symmetric tensor σij = σji is related to the 

symmetric strain tensor: 
 

݁௜௝ ൌ ௝݁௜ ൌ
1
2 ቆ

௜ݑ߲

௝ݔ߲
൅

௝ݑ߲

௜ݔ߲
ቇ (4)

 
by the Hook's law. 

The anti-symmetric stress ߪ௜௝
 ,  are given by: 

 

ଶଷߪ
 , ൌ െܨ

ߦ߲
ݐ߲  , ଷଵߪ 

 , ൌ െܨ
߲η
ݐ߲ ,

ଵଶߪ
 , ൌ െܨ

߲ζ
ݐ߲ , ଵଵߪ

 , ൌ ଶଶߪ
 , ൌ ଷଷߪ

, ൌ 0
(5)

 
where F is the coefficient of fraction: 

The stress couple Mij is given by: 
 

௜௝ܯ ൌ ௜௝ (6)ߥܯ
 
where M is the third elastic constant: 
 

ଵଵߥ ൌ
ߦ߲

ଵݔ߲
 , ଶଶߥ ൌ 0 , ଷଷߥ ൌ

߲ζ
ଵݔ߲

 , ଶଷߥ ൌ 0 , 

ଷଵߥ ൌ
ߦ߲

ଷݔ߲
 , ଵଶߥ ൌ

߲
ଵݔ߲

ሺߟ ൅ ߱ଶሻ , 

ଷଶߥ ൌ
߲

ଷݔ߲
ሺߟ ൅ ߱ଶሻ , 

ଵଷߥ ൌ
߲ζ

ଵݔ߲
 , ଶଵߥ ൌ 0 

(7)

 
where ߱ଶ ൌ ଵ

ଶ
ቀడ௨భ

డ௫య
െ డ௨య

డ௫భ
ቁ is the component of rotation. 

The heat conduction equation is given by [16]: 
 

ଶܶߘܭ ൌ ௘ܥߩ
߲ܶ
ݐ߲ ൅ ߛ ଴ܶߘ ·

߲ܷ
ݐ߲  (8)

 

where K is the thermal conductivity, T is the temperature 
change about the initial temperature T0, ρ is the density, 
Ce is the specific heat per unit mass at constant strain, γ is 
equal to α(3λ+2µ), α is the thermal expansion coefficient, 
and λ and µ are Lame’s constants and t is the time. 

The components of incremental stress in terms of the 
displacement are given by: 
 

ଵଵߪ ൌ ሺߣ ൅ ߤ2 ൅ ሻ݌
ଵݑ߲

ଵݔ߲
൅ ሺߣ ൅ ሻ݌

ଷݑ߲

ଷݔ߲
െ  ܶߛ

ଷଷߪ ൌ ߣ
ଵݑ߲

ଵݔ߲
൅ ሺߣ ൅ ሻߤ2

ଷݑ߲

ଷݔ߲
െ  ܶߛ

ଵଵߪ ൌ ߤ ൬
ଵݑ߲

ଷݔ߲
൅

ଷݑ߲

ଵݔ߲
൰ 

(9)

 
The dynamical equations of motion are [20], [21]: 
 

߲߬ଵଵ

ଵݔ߲
൅

߲߬ଵଷ

ଷݔ߲
൅ ݌

߲߱ଶ

ଷݔ߲
ൌ ߩ

߲ଶݑଵ

ଶݐ߲    

߲߬ଵଶ

ଵݔ߲
൅

߲߬ଷଶ

ଷݔ߲
ൌ 0 

߲߬ଵଷ

ଵݔ߲
൅

߲߬ଷଷ

ଷݔ߲
൅ ݌

߲߱ଶ

ଵݔ߲
ൌ ߩ

߲ଶݑଷ

ଶݐ߲    

(10)

 

߬ଶଷ െ ߬ଷଶ ൅
ଵଵܯ߲

ଵݔ߲
൅

ଷଵܯ߲

ଷݔ߲
ൌ 0  

 ߬ଷଵ െ ߬ଵଷ ൅
ଵଶܯ߲

ଵݔ߲
൅

ଷଶܯ߲

ଷݔ߲
ൌ 0  

߬ଵଶ െ ߬ଶଵ ൅
ଵଷܯ߲

ଵݔ߲
൅

ଷଷܯ߲

ଷݔ߲
ൌ 0 

(11)

 
These equations, when the stresses are substituted, 

take the forms: 
 

ሺߣ ൅ ߤ2 ൅ ሻ݌
߲ଶݑଵ

ଵݔ߲
ଶ ൅ ቀߤ ൅
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ଷݔଵ߲ݔ߲
െ ߛ

߲ܶ
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൅ 

െܨ
߲
ݐ߲ ൬

ߟ߲
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൰ ൌ ߩ
߲ଶݑଵ

ଶݐ߲  

(12)

 
߲
ݐ߲ ൬

ߦ߲
ଷݔ߲

െ
߲ζ

ଵݔ߲
൰ ൌ 0 (13)
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ଷݔଵ߲ݔ߲
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݌
2ቁ

߲ଶݑଷ

ଵݔ߲
ଶ ൅ 

൅ሺߣ ൅ ሻߤ2
߲ଶݑଷ

ଷݔ߲
ଶ െ ߛ
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൅ ܨ
߲
ݐ߲ ൬

ߟ߲
ଵݔ߲

൰ ൌ ߩ
߲ଶݑଷ

ଶݐ߲  
(14)

 

െܨ
ߦ߲
ݐ߲ ൅ ܯ ߦଶ׏ ൌ 0 (15)

 

െܨ
ߟ߲
ݐ߲ ൅ M׏ଶሺߟ ൅ ωଶሻ ൌ 0 (16)

 

െܨ
߲ζ
ݐ߲ ൅ ଶζ׏ܯ ൌ 0  (17)
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III. Solution of the Problem 

Let the constants ߣ, ,ߤ ,ߩ ,ܨ ,ܯ ,ߣ and ߛ ,ߤ ,ߩ ,ܨ ,ܯ  be ߛ
characteristics of the layer and the half-space, 
respectively. Let us introduce the displacement potentials 
߶ሺݔଵ , , ଷݔ , ଵݔሻ and ߰ሺݐ , ଷݔ  ሻ which are related to theݐ
displacement components u1 and u3 by the relations: 

 

ଵݑ ൌ
߲߶
ଵݔ߲

െ
߲߰
ଷݔ߲

 , ଷݑ ൌ
߲߶
ଷݔ߲

൅
߲߰
ଵݔ߲

 (18)

 
Substituting from (18) into (12), (14), and (16), we see 

that φ and ψ satisfy the wave equations: 
 

ଶן ߶ଶߘ െ
߲ଶ߶
ଶݔ߲ െ

ߛ
ߩ ܶ ൌ 0 (19)

 

ଶ߰ߘଶߚ െ
߲ଶ߰
ଶݔ߲ ൅ ݏ

ߟ߲
ݐ߲ ൌ 0 (20)

 

െݏᇱ ߟ߲
ݐ߲ ൅ ߟଶߘ െ ସ߰ߘ ൌ 0 (21)

 
where: 

ଶൌן
ߣ ൅ ߤ2 ൅ ݌

ߩ  , ଶߚ ൌ
ߤ ൅ ൫݌

2ൗ ൯
ߩ  ,  

ݏ  ൌ
ܨ
ߩ   , ᇱݏ ൌ

ܨ
 ܯ

(22)

 
From (18), the heat conduction Equation (8) becomes: 
 

ଶܶߘܭ ൌ ௘ܥߩ
߲ܶ
ݐ߲ ൅ ߛ ଴ܶߘଶ ·

߲߶
ݐ߲ ൌ 0 (23)

 
Elimination of T from (19) and (23), gives: 
 

൬׏ଶ െ
1
߯

∂
൰ݐ∂ ቆןଶ ߶ଶ׏ െ

߲ଶ߶
ଶݐ߲ ቇ െ ଶ׏ߝ ∂Ԅ

ݐ∂ ൌ 0 (24)

 
where: 

߯ ൌ
ܭ

ρCୣ
 , ߝ ൌ

γଶT଴

ρܭ  (25)

 
Also, η can be eliminated by the use of (20) and (21) 

as follows: 
 

൬׏ଶെݏᇱ ∂
൰ݐ∂ ቆߚଶ׏ଶ߰ െ

߲ଶ߰
ଶݐ߲ ቇ െ ସ׏ߝ ∂ψ

ݐ∂ ൌ 0 (26)

 
߶ ൌ ߶ଵሺݔଷሻ݁݌ݔሼ݅ሺݔܮଵ െ ሻሽ (27)ݐܾ

 
߰ ൌ ߰ଵሺݔଷሻ݁݌ݔሼ݅ሺݔܮଵ െ ሻሽ (28)ݐܾ

 
ሺ ξ, η, ζ ሻ ൌ ቄξଵሺݔଷሻ, ηଵሺݔଷሻ, ζ

ଵ
ሺݔଷሻቅ · 

· ଵݔܮሼ݅ሺ݌ݔ݁ െ  ሻሽݐܾ
(29)

 
where b is real positive and L in general complex. 

Substituting from (29) into (13), (15), and (17), gives: 
 

ξଵܦ െ ζଵܮ݅ ൌ 0 (30)
 

ଶξଵܦ ൅ ݄ଶξଵ ൌ 0 (31)
 

ଶζଵܦ ൅ ݄ଶζଵ ൌ 0 (32)
 
where: 

݄ଶ ൌ ᇱݏܾ݅ െ , ଶܮ ܦ ؠ ݀
ଷݔ݀

ൗ  
 

Solutions of (31) and (32), are: 
 

ξଵ ൌ ଵ݁௜௛௫యܣ ൅  , ଶ݁ି௜௛௫యܣ
ζଵ ൌ ଵ݁௜௛௫యܤ ൅ ଶ݁ି௜௛௫య (33)ܤ

 
respectively. 

From (30) and (33), we obtain: 
 

݄ሺܣଵ݁௜௛௫య െ ଶ݁ି௜௛௫యሻܣ ൅ 
െܮሺܤଵ݁௜௛௫య െ ଶ݁ି௜௛௫యሻܤ ൌ 0 (34)

 
Equating the coefficient of ݁௜௛௫య and ݁ି௜௛௫య to zero in 

(34), gives: 
 

ଵܣ ൌ
ܮ
݄ ଵܤ , ଶܣ ൌ െ

ܮ
݄ ଶ (35)ܤ

 
Also, substituting from (27) and (28) into (24) and 

(26), we obtain: 
 

ۏ
ێ
ێ
ێ
ଶןۍ ସܦ ൅ ቆܾଶ െ ଶܮ2 ଶ൅ן ߝܾ݅ ൅

ܾ݅ ଶן

߯ ቇ ൅

൅ןଶ ସܮ െ ܾଶܮଶ െ ߝଶܮܾ݅ െ
ଶܮܾ݅ ଶן

߯ ൅
ܾ݅ଷ

߯ ے
ۑ
ۑ
ۑ
ې

߶ଵ ൌ 0 (36)

 

቎
ሺߚଶ െ ସܦሻݏܾ݅ ൅

൅ሺܾଶ െ ଶߚଶܮ2 ൅ ଶߚᇱݏܾ݅ ൅ ଶܦଶሻܮݏ2ܾ݅ ൅
൅ሺߚଶ െ ସܮሻݏܾ݅ െ ሺܾ െ ଶܮଶሻܾߚᇱݏ݅ ൅ ܾ݅ଷݏᇱ

቏ ߰ଵ ൌ 0 (37)

 
The solution of (36) and (37) has the form: 
 

߶ଵ ൌ ଷ݁௠య௫యܣ ൅ ଷ݁ି௠య௫యܤ ൅ 
൅ܣସ݁௠ర௫య ൅ ସ݁ି௠ర௫య (38)ܤ

 
߶ଵ ൌ ଷ݁௡య௫యܧ ൅ ଷ݁ି௡య௫యܨ ൅ 

൅ܧସ݁௡ర௫య ൅ ସ݁ି௡ర௫య (39)ܨ

 
where: 
 

ሺ݉ଷ
ଶ , ݉ସ

ଶሻ ൌ ଶܮ െ
ܾሺܾ ൅ ሻߝ݅

ଶߙ2 ൅ 

െ
ܾ݅
2߯ േ

ܾ
ଶߙ2 ቈሺܾ ൅ ሻଶߝ݅ െ ଶሺܾߙ2݅ ൅ ሻߝ݅ െ

ସߙ

߯ ቉
ଵ

ଶൗ

 

 

(40a)
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ሺ݊ଷ
ଶ , ݊ସ

ଶሻ ൌ 

ൌ
ቈ

ଶߚଶܮ2 െ ܾଶ െ ᇱݏଶߚܾ݅ ൅
െ2ܾ݅ܮଶݏ േ ܾሾሺܾ െ ᇱሻଶݏଶߚ݅ െ 4ܾଶݏݏᇱሿଵ

ଶൗ ቉

2ሺߚଶ െ ሻݏܾ݅  
(40b)

 
Using (20), (28), (29), and (39), we get: 

 
ଵߟ ൌ Ωଷሺܧଷ݁௡య௫య ൅ ଷ݁ି௡య௫యሻܨ ൅ 

൅Ωସሺܧସ݁௡ర௫య ൅ ସ݁ି௡ర௫యሻ (41)ܨ

 
where: 
 

Ωଷ ൌ
െ݅ߚଶ

ݏܾ ቆ݊ଷ
ଶ െ ଶܮ ൅

ܾଶ

  ଶቇߚ

 

 Ωସ ൌ
െ݅ߚଶ

ݏܾ ቆ݊ସ
ଶ െ ଶܮ ൅

ܾଶ

  ଶቇߚ

(42)

 
from (19), (27), and (38), we have: 
 

ܶ ൌ ൤Ωଷ
ᇱ ሺܣଷ݁௠య௫య ൅ ଷ݁ି௠య௫యሻܤ ൅

൅Ωସ
ᇱ ሺܣସ݁௠ర௫య ൅ ସ݁ି௠ర௫యሻܤ ൨ · 

· ଵݔܮሾ݅ሺ݌ݔ݁ െ  ሻሿݐܾ
(43)

 
where: 
 

Ωଷ
ᇱ ൌ

ଶߙߩ

ߛ ቆ݉ଷ
ଶ െ ଶܮ ൅

ܾଶ

  ଶቇߙ

 

 Ωସ
ᇱ ൌ

ଶߙߩ

ߛ ቆ݉ସ
ଶ െ ଶܮ ൅

ܾଶ

 ଶቇߙ

(44)

 
The functions ξ1, ζ1, η1, φ1, and ψ1 in the state of the 

lower medium must vanish as x3 →∞ and using the 
symbols with a bar for the quantities in the lower 
medium (except x3 , L, b, p). Assuming the real parts of 
m3, m4, n3 , n4 are positive while the imaginary part of h 
is negative, we obtain, for x3 >H: 
 

ଵߦ ൌ െ
ܮ
݄  ଶ݁ି௜௛௫యܤ

 

ζଵ ൌ  ଶ݁ି௜௛௫యܤ
 

ଵߟ ൌ ଷ݁ି௡య௫యܨଷߗ ൅  ସ݁ି௡ర௫యܨସߗ
 

߶ଵ ൌ ଷ݁ି௠య௫యܤ ൅  ସ݁ି௠ర௫యܤ
 

߰ଵ ൌ ଷ݁ି௡య௫యܨ ൅  ସ݁ି௡ర௫యܨ
 

ܶ ൌ ଷߗ
ᇱ
ଷ݁ି௠య௫యܤ ൅ ସߗ

ᇱ
 ସ݁ି௠ర௫యܤ

(45)

IV. Boundary Conditions                              
and Frequency Equation 

The boundary conditions on the interface x3 = H are: 

ሺ݅ሻ ଵݑ ൌ ଵݑ , ሺ݅݅ሻ ଷݑ ൌ ,  ଷݑ ሺ݅݅݅ሻ ߦ ൌ  ߦ 
 

ሺ݅ݒሻ ߟ ൌ , ߟ  ሺݒሻ ζ ൌ ζ ,    ሺ݅ݒሻ ܯଷଷ ൌ  ଷଷܯ
 
ሺ݅݅ݒሻ ܯଷଵ ൌ ,ଷଵܯ ሺ݅݅݅ݒሻ ܯଷଶ ൌ ,  ଷଶܯ ሺ݅ݔሻ ߬ଷଷ ൌ ߬ଷଷ
 

ሺݔሻ ߬ଷଵ ൌ ߬ଷଵ  ,  ሺ݅ݔሻ ߬ଷଶ ൌ ߬ଷଶ ,   ሺ݅݅ݔሻ ܶ ൌ ܶ 
 

ሺ݅݅݅ݔሻ
߲ܶ
ଷݔ߲

൅ ܶߠ ൌ
߲ܶ
ଷݔ߲

൅  ܶ ߠ

(46)

 
The boundary conditions on the free surface x3 = 0 

are: 
 

ሺݒ݅ݔሻ ଷଷܯ ൌ 0 , ሺݒݔሻ ܯଷଵ ൌ 0 ,   
 

ሺ݅ݒݔሻ ܯଷଶ ൌ 0  ሺ݅݅ݒݔሻ ߬ଷଷ ൌ 0  ሺ݅݅݅ݒݔሻ ߬ଷଵ ൌ 0  
 

ሺݔ݅ݔሻ ߬ଷଶ ൌ 0 , ሺݔݔሻ 
߲ܶ
ଷݔ߲

൅ ܶߠ ൌ 0 

(47)

 
where: 
 

ଷଷܯ ൌ ܯ
߲ζ

ଷݔ߲
   , ଷଶܯ ൌ ܯ

߲
ଷݔ߲

ሺߟ െ , ଶ߰ሻ׏ ଷଵܯ ൌ ܯ
ߦ߲

ଷݔ߲
 

߬ଷଷ ൌ ߶ଶ׏ߣ ൅ ߤ2 ቆ
߲ଶ߶
ଷݔ߲

ଶ െ
߲ଶ߰

ଷݔଵ߲ݔ߲
ቇ െ , ܶߛ ߬ଷଶ ൌ  െܨ

ߦ߲
 ݐ߲

߬ଷଵ ൌ ߤ ቆ2
߲ଶ߶

ଷݔଵ߲ݔ߲
െ

߲ଶ߰
ଷݔ߲

ଶ ൅
߲ଶ߰
ଵݔ߲

ଶ ቇ െ ܨ
ߟ߲
ݐ߲  

 
θ is the ratio of the coefficients of heat transfer to the 

thermal conductivity. From the boundary conditions (3), 
(5), (6), and (7) we get: 
 

ଵ݁௜௛ுܤ െ ଶ݁ି௜௛ுܤ ൌ െܤଶ݁ି௜௛ு 
 

ଵ݁௜௛ுܤ ൅ ଶ݁ି௜௛ுܤ ൌ െܤଶ݁௜௛ு 
 

ଵ݁௜௛ுܤሺܯ െ ଶ݁ି௜௛ுሻܤ ൌ െܤ ܯଶ݁ି௜௛ு 
 

ଵ݁௜௛ுܤሺܯ ൅ ଶ݁ି௜௛ுሻܤ ൌ െܤ ܯଶ݁ି௜௛ு

(48)

 
whence: 
 

ଵܤ ൌ ଶܤ ൌ ଶܤ ൌ 0 , ߦ ൌ ζ ൌ ߦ ൌ ζ ൌ 0 (49)
 

The other significant boundary conditions are 
responsible for the following relations: 

 
ሺ݅ݔݔሻ ଷܧଵሺݍ െ ଷሻܨ ൅ ସܧଶሺݍ െ ସሻܨ ൌ 0 

 
ሺ݅݅ݔݔሻ ݍଷሺܣଷ ൅ ଷሻܤ ൅ ସܣସሺݍ ൅ ସሻܤ ൅ 

൅ݍହሺܧଷ െ ଷሻܨ ൅ ସܧ଺ሺݍ െ ସሻܨ ൌ 0 
 

ሺ݅݅݅ݔݔሻ ଷܣ଻ሺݍ െ ଷሻܤ ൅ ସܣሺ଼ݍ െ ସሻܤ ൅ 
൅ݍଽሺܧଷ െ ଷሻܨ ൅ ସܧଵ଴ሺݍ െ ସሻܨ ൌ 0 

(50a)
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ሺݒ݅ݔݔሻ ݅ܮሺܣଷ݁௠యு ൅ ଷ݁ି௠యுܤ ൅ ସ݁௠రுܣ

൅ ସ݁ି௠రுሻܤ
െ ݊ଷሺܧଷ݁௡యு ൅ ଷ݁ି௡యுሻܨ
െ ݊ସሺܧସ݁௡రு ൅ ସ݁ି௡రுሻܨ
ൌ ଷ݁ି௠యுܤܮ݅ ൅ ସ݁ି௠రுܤܮ݅

൅ ݊ଷܨଷ݁ି௡యு ൅ ݊ସܨସ݁ି௡రு 
ሺݒݔݔሻ ݉ଷሺܣଷ݁௠యு െ ଷ݁ି௠యுሻܤ

൅ ݉ସሺܣସ݁௠రு െ ସ݁ି௠రுሻܤ
൅ ݈݅ሺܧଷ݁௡యு െ ଷ݁ି௡యுܨ

൅ ସ݁௡రுܧ ൅ ସ݁ି௡రுሻܨ
ൌ െ݉ଷܤଷ݁ି௠యு െ ݉ସܤସ݁ି௠రு

൅ ଷ݁ି௡యுܨܮ݅ ൅  ସ݁ି௡రுܨܮ݅
ሺ݅ݒݔݔሻ Ωଷሺܧଷ݁௡యு ൅ ଷ݁ି௡యுሻܨ

൅ Ωସሺܧସ݁௡రு ൅ ସ݁ି௡రுሻܨ
ൌ Ωଷܨଷ݁ି௡యு ൅ Ωସܨସ݁ି௡రு 

ሺ݅݅ݒݔݔሻ ܯሾݍଵሺܧଷ݁௡యு െ ଷ݁ି௡యுሻܨ
൅ ସ݁௡రுܧଶሺݍ ൅ ସ݁ି௡రுሻሿܨ
ൌ െܯ൫qଵܨଷ݁ି௡యு

൅ qଶܨସ݁ି௡రு൯ 
ሺ݅݅݅ݒݔݔሻݍଷሺܣଷ݁௠యு ൅ ଷ݁ି௠యுሻܤ

൅ ସ݁௠రுܣସሺݍ ൅ ସ݁ି௠రுሻܤ
൅ ଷ݁௡యுܧହሺݍ െ ଷ݁ି௡యுሻܨ
൅ ସ݁௡రுܧ଺ሺݍ ൅ ସ݁ି௡రுሻܨ
ൌ ଷ݁ି௠యுܤଷݍ ൅ ସ݁ି௠రுܤସݍ

െ ଷ݁ି௡యுܨହݍ െ  ସ݁ି௡రுܨ଺ݍ
ሺݔ݅ݔݔሻ ݍ଻ሺܣଷ݁௠యு െ ଷ݁ି௠యுሻܤ

൅ ସ݁௠రுܣሺ଼ݍ െ ସ݁ି௠రுሻܤ
൅ ଷ݁௡యுܧଽሺݍ െ ଷ݁ି௡యுሻܨ
൅ ସ݁௡రுܧଵ଴ሺݍ െ ସ݁ି௡రுሻܨ
ൌ ଷ݁ି௠యுܤ଻ݍ െ ସ݁ି௠రுܤ଼ݍ

െ ଷ݁ି௡యுܨଽݍ െ  ସ݁ି௡రுܨଵ଴ݍ
ሺݔݔݔሻ Ωଷ

ᇱ ሺܣଷ݁௠యு ൅ ଷ݁ି௠యுሻܤ
൅ Ωସ

ᇱ ሺܣସ݁௠రு ൅ ସ݁ି௠రுሻܤ
ൌ Ωଷ

ᇱ
ଷ݁ି௠యுܤ  ൅ Ωସ

ᇱ
 ସ݁ି௠రுܤ

ሺ݅ݔݔݔሻ ݍଵଵܣଷ݁௠యு ൅ ଷ݁ି௠యுܤଵଶݍ ൅ ସ݁௠రுܣଵଷݍ

൅ ସ݁ି௠రுܤଵସݍ

ൌ ଷ݁ି௠యுܤଵଶݍ ൅  ସ݁ି௠రுܤଵସݍ
ሺ݅݅ݔݔݔሻ ݍଵଵܣଷ ൅ ଷܤଵଶݍ ൅ ସܣଵଷݍ ൅ ସܤଵସݍ ൌ 0

(50b)

 
where: 
 

ଵݍ ൌ ݊ଷሺΩଷ ൅ ଶܮ െ ݊ଷ
ଶሻ  ,            ݍଵ

ൌ ݊ଷሺΩଷ ൅ ଶܮ െ ݊ଷ
ଶሻ 

ଶݍ ൌ ݊ସሺΩସ ൅ ଶܮ െ ݊ସ
ଶሻ  ,            ݍଶ

ൌ ݊ସሺΩସ ൅ ଶܮ െ ݊ସ
ଶሻ 

ଷݍ ൌ ሺ2ߤ ൅ ሻLଶ݌ െ ଶܾߩ െ ଷ݉݌
ଶ  ,     ݍଷ

ൌ ሺ2ߤ ൅ ሻLଶ݌ െ ଶܾߩ െ ଷ݉݌
ଶ 

ସݍ ൌ ሺ2ߤ ൅ ሻLଶ݌ െ ଶܾߩ െ ସ݉݌
ଶ  ,     ݍସ

ൌ ሺ2ߤ ൅ ሻLଶ݌ െ ଶܾߩ െ ସ݉݌
ଶ 

ହݍ ൌ െ2݅݊ߤܮଷ  ,                    ݍହ ൌ െ2݅ߤܮ ݊ଷ 
଺ݍ ൌ െ2݅݊ߤܮସ  ,                    ݍ଺ ൌ െ2݅ߤܮ ݊ସ 

଻ݍ ൌ െ2݅݉ߤܮଷ  ,                    ݍ଻ ൌ െ2݅ߤܮ ݉ଷ 
଼ݍ ൌ െ2݅݉ߤܮସ  ,                ଼ݍ ൌ െ2݅ߤܮ ݉ସ 

 

(51a)

ଽݍ ൌ Ωଷܨܾ݅ െ ଶܮߤ െ ଷ݊ߤ
ଶ , 

ଽݍ ൌ ܨܾ݅ Ωଷ െ ଶܮߤ െ ଷ݊ ߤ
ଶ 

ଵ଴ݍ ൌ Ωସܨܾ݅ െ ଶܮߤ െ ସ݊ߤ
ଶ ,  

ଵ଴ݍ  ൌ Ωସ ܨܾ݅ െ ଶܮߤ െ ସ݊ ߤ
ଶ 

ଵଵݍ ൌ Ωଷ
ᇱ ሺߠ ൅ ݉ଷሻ ,                 ݍଵଵ ൌ Ωଷ

ᇱ
൫ ߠ ൅ ݉ଷ൯ 

ଵଶݍ ൌ Ωଷ
ᇱ ሺߠ െ ݉ଷሻ ,                 ݍଵଶ ൌ Ωଷ

ᇱ
൫ ߠ െ ݉ଷ൯ 

ଵଷݍ ൌ Ωସ
ᇱ ሺߠ ൅ ݉ସሻ , ଵଷݍ      ൌ Ωସ

ᇱ
൫ ߠ ൅ ݉ସ൯ 

ଵସݍ ൌ Ωସ
ᇱ ሺߠ െ ݉ସሻ , ଵସݍ      ൌ Ωସ

ᇱ
൫ ߠ െ ݉ସ൯ 

(51b)

 
Elimination: 
 

, ଷܣ , ଷܤ , ସܣ , ସܤ , ଷܧ , ଷܨ , ସܧ , ସܨ , ଷܤ , ସܤ , ଷܨ  ସܨ
 
gives the wave velocity equation in the form of: 
 

det ݀௜௝ ൌ 0 (52)
 
where the non-vanishing entries of the twelfth-order 
determinant of ݀௜௝ are given by: 
 
݀ଵହ ൌ ,ଵ݁ି௡యுݍ ݀ଵ଺ ൌ െݍଵ݁௡యு , 
݀ଵ଻ ൌ ,ଶ݁ି௡రுݍ ݀ଵ଼ ൌ െݍଶ݁௡రு 
݀ଶଵ ൌ ,ଷ݁ି௠యுݍ  ݀ଶଶ ൌ  , ଷ݁௠యுݍ
݀ଶଷ ൌ ,ସ݁ି௠రுݍ    ݀ଶସ ൌ  ସ݁௠రுݍ
݀ଶହ ൌ ,ହ݁ି௡యுݍ  ݀ଶ଺ ൌ െݍହ݁௡యு, 
݀ଶ଻ ൌ ,଺݁ି௡రுݍ    ݀ଶ଼ ൌ െݍ଺݁௡రு 
݀ଷଵ ൌ ,଻݁ି௠యுݍ  ݀ଷଶ ൌ െݍ଻݁௠యு , 
݀ଷଷ ൌ ,௠రுି଼݁ݍ   ݀ଷସ ൌ െ଼݁ݍ௠రு 
݀ଷହ ൌ ,ଽ݁ି௡యுݍ  ݀ଷ଺ ൌ െݍଽ݁௡యு , 
݀ଷ଻ ൌ ,ଵ଴݁ି௡రுݍ   ݀ଷ଼ ൌ െݍଵ଴݁௡రு 
݀ସଵ ൌ , ܮ݅   ݀ସଶ ൌ , ܮ݅     ݀ସଷ ൌ ,ܮ݅     ݀ସସ ൌ  ܮ݅
݀ସହ ൌ െ݊ଷ ,    ݀ସ଺ ൌ െ݊ଷ ,   ݀ସ଻ ൌ ݊ସ,     ݀ସ଼ ൌ ݊ସ
݀ସଽ ൌ െ݅ܮ ,    ݀ସଵ଴ ൌ , ܮ݅     ݀ସଵଵ ൌ െ݊ଷ , 

݀ସଵଶ ൌ ݊ସ,݀ହଵ ൌ ݉ଷ ,       ݀ହଶ ൌ െ݉ଷ , 
݀ହଷ ൌ ݉ସ , ݀ହସ ൌ െ݉ସ, ݀ହହ ൌ , ܮ݅  ݀ହ଺ ൌ  , ܮ݅

݀ହ଻ ൌ , ܮ݅     ݀ହ଼ ൌ ହଽ݀ ,ܮ݅ ൌ ݉ଷ , 
 ݀ହଵ଴ ൌ ݉ସ ,     ݀ହଵଵ ൌ , ܮ݅   ݀ହଵଶ ൌ  ܮ݅
݀଺ଵଵ ൌ െߗଷ ,    ݀଺ଵଶ ൌ െߗସ ,    ݀଻ହ ൌ  , ଵݍܯ

݀଻଺ ൌ െݍܯଵ,݀଻଻ ൌ , ଶݍܯ     ݀଻଼ ൌ െݍܯଶ , 
݀଻ଵଵ ൌ , ଵݍ ܯ    ݀଻ଵଶ ൌ െݍ ܯଶ 
଼݀ଵ ൌ ,  ଷݍ      ଼݀ଶ ൌ , ଷݍ       ଼݀ଷ ൌ  , ସݍ
଼݀ସ ൌ ସ଼݀ହݍ ൌ , ହݍ  ଼݀଺ ൌ െݍହ ,  ଼݀଻ ൌ  , ଺ݍ
଼଼݀ ൌ െݍ଺, ଼݀ଽ ൌ െݍଷ ,    ଼݀ଵ଴ ൌ െݍସ , 
଼݀ଵଵ ൌ , ହݍ  ଼݀ଵଶ ൌ ,଺ݍ ݀ଽଵ ൌ  , ଻ݍ
݀ଽଶ ൌ െݍ଻ ,       ݀ଽଷ ൌ , ଼ݍ       ݀ଽସ ൌ െ଼ݍ 
݀ଽହ ൌ , ଽݍ    ݀ଽ଺ ൌ െݍଽ ,       ݀ଽ଻ ൌ  , ଵ଴ݍ
݀ଽ଼ ൌ െݍଵ଴, ݀ଽଽ ൌ , ଻ݍ    ݀ଽଵ଴ ൌ , ଼ݍ   ݀ଽଵଵ ൌ  , ଽݍ

  ݀ଽଵଶ ൌ ଵ଴, ݀ଵ଴ଵݍ ൌ ଷߗ
ᇱ  ,   ݀ଵ଴ଶ ൌ ଷߗ

ᇱ  , 
      ݀ଵ଴ଷ ൌ ସߗ

ᇱ  ,      ݀ଵ଴ସ ൌ ସߗ
ᇱ , ݀ଵ଴ଽ ൌ െߗଷ

ᇱ
 , 

 ݀ଵ଴ଵ଴ ൌ െߗସ
ᇱ
 ,    ݀ଵଵଵ ൌ , ଵଵݍ     ݀ଵଵଶ ൌ  ଵଶݍ

݀ଵଵଷ ൌ ଵଷݍ , ݀ଵଵସ ൌ ,  ଵସݍ   ݀ଵଵଽ ൌ െݍଵଶ ,
݀ଵଵଵ଴ ൌ െݍଵସ 

(53a)
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݀ଵହ ൌ ,ଵ݁ି௡యுݍ   ݀ଵ଺ ൌ െݍଵ݁௡యு , 
  ݀ଵ଻ ൌ ,ଶ݁ି௡రுݍ   ݀ଵ଼ ൌ െݍଶ݁௡రு 
݀ଶଵ ൌ ,ଷ݁ି௠యுݍ  ݀ଶଶ ൌ   , ଷ݁௠యுݍ
  ݀ଶଷ ൌ ,ସ݁ି௠రுݍ    ݀ଶସ ൌ  ସ݁௠రுݍ
݀ଶହ ൌ ,ହ݁ି௡యுݍ  ݀ଶ଺ ൌ െݍହ݁௡యு,  

  ݀ଶ଻ ൌ ,଺݁ି௡రுݍ    ݀ଶ଼ ൌ െݍ଺݁௡రு 
݀ଷଵ ൌ ,଻݁ି௠యுݍ  ݀ଷଶ ൌ െݍ଻݁௠యு ,  
 ݀ଷଷ ൌ ,௠రுି଼݁ݍ   ݀ଷସ ൌ െ଼݁ݍ௠రு 
݀ଷହ ൌ ,ଽ݁ି௡యுݍ  ݀ଷ଺ ൌ െݍଽ݁௡యு ,  

  ݀ଷ଻ ൌ ,ଵ଴݁ି௡రுݍ   ݀ଷ଼ ൌ െݍଵ଴݁௡రு 
݀ସଵ ൌ , ܮ݅   ݀ସଶ ൌ , ܮ݅     ݀ସଷ ൌ ,ܮ݅     ݀ସସ ൌ  ܮ݅
݀ସହ ൌ െ݊ଷ ,    ݀ସ଺ ൌ െ݊ଷ ,   ݀ସ଻ ൌ ݊ସ,     ݀ସ଼ ൌ ݊ସ 

݀ସଽ ൌ െ݅ܮ ,    ݀ସଵ଴ ൌ  , ܮ݅
     ݀ସଵଵ ൌ െ݊ଷ ,     ݀ସଵଶ ൌ ݊ସ 
݀ହଵ ൌ ݉ଷ ,       ݀ହଶ ൌ െ݉ଷ ,  
    ݀ହଷ ൌ ݉ସ ,   ݀ହସ ൌ െ݉ସ 

݀ହହ ൌ , ܮ݅        ݀ହ଺ ൌ , ܮ݅       ݀ହ଻ ൌ , ܮ݅     ݀ହ଼ ൌ  ܮ݅
݀ହଽ ൌ ݉ଷ ,  ݀ହଵ଴ ൌ ݉ସ ,     ݀ହଵଵ ൌ , ܮ݅   ݀ହଵଶ ൌ  ܮ݅

݀଺ଵଵ ൌ െߗଷ ,    ݀଺ଵଶ ൌ െߗସ , 
    ݀଻ହ ൌ , ଵݍܯ     ݀଻଺ ൌ െݍܯଵ 
݀଻଻ ൌ , ଶݍܯ     ݀଻଼ ൌ െݍܯଶ ,  

   ݀଻ଵଵ ൌ , ଵݍ ܯ    ݀଻ଵଶ ൌ െݍ ܯଶ 
଼݀ଵ ൌ ,  ଷݍ      ଼݀ଶ ൌ   , ଷݍ

      ଼݀ଷ ൌ , ସݍ        ଼݀ସ ൌ  ସݍ
଼݀ହ ൌ , ହݍ  ଼݀଺ ൌ െݍହ ,  ଼݀଻ ൌ , ଺ݍ  ଼଼݀ ൌ െݍ଺ 
଼݀ଽ ൌ െݍଷ ,    ଼݀ଵ଴ ൌ െݍସ ,  ଼݀ଵଵ ൌ , ହݍ  ଼݀ଵଶ ൌ ଺ݍ

݀ଽଵ ൌ , ଻ݍ     ݀ଽଶ ൌ െݍ଻ ,  
      ݀ଽଷ ൌ , ଼ݍ       ݀ଽସ ൌ െ଼ݍ 

݀ଽହ ൌ , ଽݍ    ݀ଽ଺ ൌ െݍଽ ,  
      ݀ଽ଻ ൌ , ଵ଴ݍ       ݀ଽ଼ ൌ െݍଵ଴ 

݀ଽଽ ൌ , ଻ݍ    ݀ଽଵ଴ ൌ , ଼ݍ   ݀ଽଵଵ ൌ , ଽݍ   ݀ଽଵଶ ൌ  ଵ଴ݍ
݀ଵ଴ଵ ൌ ଷߗ

ᇱ  ,   ݀ଵ଴ଶ ൌ ଷߗ
ᇱ  , 

       ݀ଵ଴ଷ ൌ ସߗ
ᇱ  ,      ݀ଵ଴ସ ൌ ସߗ

ᇱ  
݀ଵ଴ଽ ൌ െߗଷ

ᇱ
 ,  ݀ଵ଴ଵ଴ ൌ െߗସ

ᇱ
 , 

    ݀ଵଵଵ ൌ , ଵଵݍ     ݀ଵଵଶ ൌ  ଵଶݍ
݀ଵଵଷ ൌ , ଵଷݍ  ݀ଵଵସ ൌ ,  ଵସݍ   ݀ଵଵଽ ൌ െݍଵଶ ,

݀ଵଵଵ଴ ൌ െݍଵସ 
݀ଵଶଵ ൌ ,ଵଵ݁ି௠యுݍ ݀ଵଶଶ ൌ  ,ଵଶ݁௠యுݍ
 ݀ଵଶଷ ൌ ,ଵଷ݁ି௠రுݍ  ݀ଵଶସ ൌ  ଵସ݁௠రுݍ

(53b)

 
Equation (52) determines the wave velocity equation 

for the Rayleigh waves in a thermoelastic granular 
medium under initial stress. 

V. Numerical Results and Discussion 
The transcendental equation (52), in the determinant 

form, has complex roots. The real part gives the velocity 
of Rayleigh waves and the imaginary part gives the 
attenuation due to the granular nature of the medium. It is 
clear from (52) that the phase velocity depends on the 
initial stress p, the fraction F and the coupling factor ε. 

Numerical results have been obtained graphically to 
show the effect of the initial stress on the frequency w 
through the wave number k of the frequency equation.  

The results of the present investigation are displayed 
in Figures 1-16. The basic material properties are taken: 

λ = 7.76x1010 ,  µ = 3.86 x1010 ,  m0 = 0.1 ,  f0 = 0.4 , 
Ce = 383.1, 

 
H = 0.9 ,   αt = 1.78x10-5 ,  s0 = f0 / m0  ,  ρ0 = 8954 , 

T0 = 293 
 

Harmonic vibrations have been studied using a half-
interval method. The governing equations are recorded 
for future reference. The frequency equations have been 
obtained under the effect of initial stress for two cases 
coupled problem (ε ≠ 0) and uncoupled problem (ε = 0). 
It is found that the frequency decreases and increases 
with increasing k for all cases. It should be pointed out 
that since the frequency equations; there are an infinite 
number of frequencies for each class of vibration. For a 
given geometry and elastic constants of the half-space, 
the frequency equations are essentially an implicit 
transcendental equations of the frequency parameter w 
boundary conditions. Figures 1-16 depict the variation of 
frequencies w along the wave number k of the half-space 
with different values of the initial stress P. It is seen 
easily from all figures that the frequencies satisfy the 
physical phenomena. Figures 1-4 show that when P 
increases the frequencies w are decreasing. 

 

 
Fig. 1. Non-dimensional frequency w versus the wave number k of non-

homogeneous material for p = 0.5x1010 and  ε = 5.13x107 
 

 
 

Fig. 2. Non-dimensional frequency w versus the wave number k of non-
homogeneous material for p = 1.0x1010 and ε = 5.13x107 

0.000 0.002 0.004 0.006 0.008
0.0

0.2

0.4

0.6

0.8

1.0

w

k

 First mode
 Second mode
 Third mode

   p = 0.5 x1010

    ε = 5.13 x107

0.000 0.002 0.004 0.006 0.008
0.0

0.2

0.4

0.6

0.8

1.0

w

k

 First mode
 Second mode
 Third mode

   p = 1.0 x1010

   ε = 5.13 x107



 
G. A. Yahya 

Copyright © 2011 Praise Worthy Prize S.r.l. - All rights reserved                                                                 International Review of Physics, Vol. 5, N. 6 

386 

 
 

Fig. 3. Non-dimensional frequency w versus the wave number k of non-
homogeneous material for p = 1.5x1010 and ε = 5.13x107 

 

 
 

Fig. 4. Non-dimensional frequency w versus the wave number k of 
non-homogeneous material for p = 2.0x1010 and ε = 5.13x107 

 
Moreover, the non dimensional frequency is greatly 

affected by the initial stress of the half-space for the 
coupled problem. Figures 5-8 show that the effect of 
initial stress on the frequency w. 

 

 
 

Fig. 5. Non-dimensional frequency w versus the wave number k of non-
homogeneous material for p = 0.5x1010 and ε = 0.0 

 

 
 

Fig. 6. Non-dimensional frequency w versus the wave number k of non-
homogeneous material for p = 1.0x1010 and ε = 0.0 

 

 
 

Fig. 7. Non-dimensional frequency w versus the wave number k of non-
homogeneous material for p = 1.5x1010 and ε = 0.0 

 

 
 

Fig. 8. Non-dimensional frequency w versus the wave number k of 
 non-homogeneous material for p = 2.0x1010 and ε = 0.0 

 
It is seen easily from all Figures 5-8 show that the 

frequencies are decreasing and increasing with increasing 
the wave number k. It is also shown that the non 
dimensional frequencies w decreases when the initial 
stress increases for uncoupled problem. 
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Figures 9-12 show that the frequency w at ε ≠ 0 
greater than the frequency at ε = 0.  

 

 
 

Fig. 9. Non-dimensional frequency w versus the wave number k of non-
homogeneous material for ε ≠ 0.0 and ε = 0.0 at p = 0.5x1010 

 

 
 

Fig. 10. Non-dimensional frequency w versus the wave number k of 
non-homogeneous material for ε ≠ 0.0 and ε = 0.0 at p = 1.0x1010 

 

 
 

Fig. 11. Non-dimensional frequency w versus the wave number k of 
non-homogeneous material for ε ≠ 0.0 and ε = 0.0 at p = 1.5x1010 

 

 
 

Fig. 12. Non-dimensional frequency w versus the wave number k of 
non-homogeneous material for ε ≠ 0.0 and ε = 0.0 at p = 2.0x1010 

 

Figures 13-16 show that the variation of the frequency 
w for different values of initial stress at ε ≠ 0 and at ε = 
0.  

 

 
 

Fig. 13. Non-dimensional frequency w versus the wave number k of 
non-homogeneous material for p = 0.5x1010 and p =1.0x1010 at ε ≠ 0.0 

 

 
 

Fig. 14. Non-dimensional frequency w versus the wave number k of 
non-homogeneous material for p = 1.5x1010 and p =2.0x1010 at ε ≠ 0.0 

 

0.000 0.003 0.006 0.009
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

w

k

 ε =5.13 x107

 ε = 0.0
     p=0.5 x1010

0.000 0.002 0.004 0.006 0.008 0.010
0.0

0.1

0.2

0.3

0.4

0.5

w

k

 ε =5.13 x107

 ε = 0.0
     p=1.0 x1010

0.000 0.002 0.004 0.006 0.008 0.010
0.0

0.1

0.2

0.3

0.4

0.5

w

k

 ε =5.13 x107

 ε = 0.0
  p=1.5 x1010

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

w

k

 ε =5.13 x107

 ε = 0.0
   p= 2.0 x1010

0.000 0.003 0.006 0.009
0.0

0.1

0.2

0.3

0.4

0.5
w

k

 p=0.5 x1010

 p=1.0 x1010

   ε = 5.13 x107

0.000 0.002 0.004 0.006 0.008
0.0

0.1

0.2

0.3

0.4

0.5

w

k

 p= 1.5 x1010

 p = 2.0 x1010

   ε = 5.13 x107



 
G. A. Yahya 

Copyright © 2011 Praise Worthy Prize S.r.l. - All rights reserved                                                                 International Review of Physics, Vol. 5, N. 6 

388 

 
 

Fig. 15. Non-dimensional frequency w versus the wave number k of 
non-homogeneous material for p = 0.5x1010 and p =1.0x1010 at ε = 0.0 

 

 
 

Fig. 16. Non-dimensional frequency w versus the wave number k of 
non-homogeneous material for p = 1.5x1010 and p =2.0x1010 at ε = 0.0 

 
It is seen from the results, that initial stress of the half-

space have significant effects on the free vibration 
frequency of embedded half-space. This may be of great 
importance in structural design of practical engineering. 
Especially, in the areas that have server restrictions on 
the dynamics of the structures, the results of this example 
illustrate that new types material may provide such 
demanded conditions. 

VI. Conclusion 
The exact solution for half-space subjected to initial 

stress and thermal stress is obtained. Harmonic vibrations 
of elastic half-space have been studied using a half-
interval method. The governing equations in Cartesian 
coordinates are recorded for future reference. The 
frequency equations have been obtained under the effect 
of initial stress, thermal stress and mechanical coupled 
parameter ε. Variation of the frequencies w with the 
wave number have been shown graphically and they are 
compared in the absence of initial stress. In addition, the 
formulation of the method is quite straightforward, and 
the bulk of the computational effort can be completed 

numerically. The results presented in this paper should 
prove useful for researchers in material science, 
designers of new materials as well as for those working 
on the development of theory elasticity. 
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Magnetic Field and Relaxation Times Effects on the Propagation 
of Thermoelastic Waves from Isothermal or Insulated Boundaries 

of a Half Space 
 
 

S. M. Abo-Dahab1, R. A. Mohamed2, A. M. Abd-Alla3 

 
 
Abstract – In the present paper, an estimation to study effects of the relaxation times and magnetic 
field on the reflection of P-wave and SV-wave on the boundary of a half-space of homogeneous, 
isotropic thermoelastic medium taking into our consideration the boundary is stress-free as well as 
insulated or isothermal. GL model of generalized thermoelasticity has been applied to obtain the 
amplitudes of the Reflection coefficients. Lame's potentials are used in the two dimensions oxz that 
tend to separate the governing equations into three equations that sought in harmonic travelling 
form. We introduce the equations of the velocity of P-wave, T-wave and SV-wave. The boundary 
conditions for mechanical and Maxwell's stresses and thermal insulated or isothermal are applied 
to determine the reflection coefficients for P-wave, T-wave and SV wave. Some new aspects are 
obtained of the reflection coefficients and displayed graphically and the new conclusions are 
presented. Effects of relaxation times and magnetic field on the reflection of generalized 
thermoelastic waves are noticed and depicted graphically. Finally, it is shown that, under some 
conditions and some modifications, the previous results are special cases from our results. 
Copyright © 2011 Praise Worthy Prize S.r.l. - All rights reserved. 
 
Keywords: Magnetic Field, Reflection, Half Space, P-Wave, T-Wave, SV-Wave, Relaxation Times, 

Isothermal Boundaries, Insulated Surface 
 
 

Nomenclature 

B  Is the magnetic induction 

vC  Is the specific heat per unit mass 

F  Is Lorenz’s body forces 

h  Is the perturbed magnetic field 

ih  Are the components of heat flux tensor 

oH  Is constant magnetic field 

J  Is the electric current density 
k  Is the wave number 
K  Is the thermal coductivity 

Tk  Is the isothermal 
t  Is the time 
T  Is the absolute temperature 

0T  Is the natural temperature of the medium, 

0

0
1

T T
T
−

 

iu  Are the components of the displacement 
tensor 

v  Is the phase speed 
tα  Is the thermal expansion 

γ  ( )t= 3 2α λ µ+  

ijδ  Is Kronecker delta 

andλ µ  Are Lame’s parameters 

eµ  Is the magnetic permeability 

ijσ  Are the components of stress tensor 

0 1,τ τ  Are the thermal relaxation times 

ijτ  Are the Maxwell’s stress tensor 

ω Is the frequency 
Is the standard length 

I. Introduction 
Recently, more attentions has made for the theory of 

thermoelasticity because of its utilitarian aspects in 
diverse fields, especially, Structures, Biology, Geology, 
Geophysics, Acoustics, Physics, Plasma, etc. Duhamel [1] 
and Neumann [2] introduced the theory of uncoupled 
thermoelasticity which contain two shortcomings. First, 
the fact that the mechanical state of the elastic body has no 
effect on the temperature, is not in accordance with true 
physical experiments. Second, the heat equation being 
parabolic predicts an infinite speed of propagation for the 
temperature, which is not physically admissible. The 
theory of elasticity with nonuniform heat which was in 
half-space subjected of thermal shock in this context 
which known as the theory of uncoupled thermoelasticity 
and the temperature is governed by a parabolic partial 
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differential equation in temperature term only has been 
discussed [3]. Biot [4] introduced the theory of classical 
thermoelasticity, the equation of motion is hyperbolic in 
nature, whereas the heat conduction equation is parabolic 
in nature; the theory predicts a finite speed for 
predominantly elastic disturbances but an infinite speed 
for predominantly thermal disturbances, which are 
coupled together. Obviously, this result is physically 
unrealistic, so, [5]-[11] made an experimental 
investigations conducted on various solids, for example, 
have shown that heat pulses do propagate with finite 
speed. These theories remove the paradox of infinite 
speed of heat propagation inherent in the conventional 
coupled dynamical theory of thermoelasticity introduced 
by Biot [4]. Lord and Shulman [12], have discovered the 
theory which determines the finite speed for the motion 
due to thermal field using one relaxation time. By 
including temperature rate, Green and Lindsay [13] 
violated the classical Fourier's law of heat conduction 
when the body under consideration has a center of 
symmetry. This theory also predicts a finite speed of heat 
propagation using two relaxation times. This implies that 
the thermal wave propagates with infinite speed, a 
physically impossible result. 

During the second half of twentieth century, 
nonisothermal problems of the theory of elasticity became 
increasingly impact. This is due mainly to their many 
applications in widely diverse fields. First, in the nuclear 
field, the external high temperatures and temperature 
gradients originating inside nuclear reactors influence 
their design and operations. Secondly, the high velocities 
of modern aircraft give rise to aerodynamic heating, 
which produces intense thermal stresses, reducing the 
strength of the aircraft structure [14]. Nowacki [15] 
investigated the dynamic problems of thermoelasticity. 
Some problems of thermoelasticity are discussed 
[16]-[17]. Three different models of thermoelasticity in an 
alternative way have been discussed including the 
anisotropic case [18]. A survey article of representative 
theories in the range of generalized thermoelasticity is due 
to Hetnarski and Ignaczak [19]. 

In recent years, the theory of magneto-thermoelasticity 
which deals the interactions among strain, temperature 
and electromagnetic fields has drawn the attention of 
many researchers because of its extensive uses in diverse 
fields, such as Geophysics for understanding the effect of 
the Earth's magnetic field on seismic waves, damping of 
acoustic waves in a magnetic field, emission of 
electromagnetic radiations from nuclear devices, 
development of a highly sensitive superconducting 
magnetometer, electrical power engineering, optics, etc. 
Knopoff [20] and Chadwick [21] studied these types of 
problems in the beginning and developed by Kaliski and 
Petykiewicz [22]. 

The generalized magneto-thermoelasticity in a 
perfectly conducting medium is investigated [23]. Baksi et 
al. [24] illustrate magneto-thermoelastic problems with 
thermal relaxation and heat sources in a three dimensional 
infinite rotating elastic medium. 

[25]-[27] studied the reflection of thermoelastic waves 
from the free surface of a solid half-space and at the 
interface of two semi-infinite media in welded contact, in 
the context of generalized thermoelasticity. Sharma et al. 
[28] considered the titled problem of reflection of 
thermoelastic waves at (i) a stress free thermally 
insulated/isothermal boundary (ii) a rigidly fixed 
thermally insulated/isothermal boundary for LS, GL and 
GN models for generalized thermoelasticity and 
calculated the coefficient ratios. The ratios of (i) reflected 
P-wave, SV-wave and thermal wave with incident 
P-wave; as also the ratios of (ii) reflected SV-wave, 
P-wave, and thermal wave with incident SV-wave are 
calculated in terms of the roots of two auxiliary equations 
governing the partial differential equations of the field 
variables. Montanaro [29] investigated an isotropic linear 
thermoelasticity with hydrostatic initial stress. Abd-Alla 
et al. [30] studied the reflection of the generalized 
magneto-thermo-viscoelastic plane waves. Abo-Dahab 
and Mohamed [31] pointed out the influence of magnetic 
field and hydrostatic initial stress on reflection 
phenomena of P and SV waves from a generalized 
thermoelastic solid half-space. Singh [32] investigated the 
reflection of P and SV waves from free surface of an 
elastic solid with generalized thermodiffusion. Singh et al. 
[33] discussed the reflection of generalized thermoelastic 
waves from a solid half-space under hydrostatic initial 
stress. Recently, Das et al. [34] investigated the reflection 
of generalized thermoelastic waves from isothermal and 
insulated boundaries of a half space; the paper has some 
modifications by the author of the present paper. 

In this paper, we have investigated the influences of the 
magnetic field, thermal relaxation times on the reflection 
of thermoelastic waves from isothermal and insulated 
boundaries of a half space using GL model. Lame's 
potentials used in the (x-z) plane. We obtain the equations 
of the velocity of P-wave, T-wave and SV-wave. The 
boundary conditions for mechanical and Maxwell's 
stresses and thermal isothermal and insulated are applied 
to determine the reflection coefficients for P-wave, 
T-wave and SV-wave. The numerical example is used to 
discuss the dependence of reflection coefficients upon 
thermal relaxation times, magnetic field and angle of 
incidence for P-wave and SV-wave. Finally, the 
amplitudes ratios of the reflection coefficients have been 
calculated and displayed graphically.  

II. Formulation of the Problem and 
Governing Equations 

Consider the rectangular Cartesian coordinate system 
be fixed at a point on the boundary of the half-space with 

> 0z  axis directed normally inside the medium with 
x − axis along the horizontal direction y − axis is taken in 
the direction of the line of intersection of the plane wave 
front with the plane surface (as in Fig. 1). If we restrict our 
analysis to plane strain in the (x-z) plane, then all the 
field variables may be taken as functions of ;x z  and t , 
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hence the displacement vector may be taken 
( ) ( )( ), , , 0, , ,u x z t w x z t  and the magnetic field must be 

taken in a perpendicular direction on the plane motion, 

i.e., H
→

 = .yH  
The governing equations for an isotropic, 

homogeneous elastic solid with generalized thermoelastic 
at reference temperature 0T  with the body forces are: 
(i) the constitutive equation: 

 

 
1= 1 2ij kk ij ije T e

t
σ λ γ τ δ µ⎡ ∂ ⎤⎛ ⎞− + +⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦

 (1) 

 

 

1=
2

ji
ij

j i

uu
e

x x

⎛ ⎞∂∂
+⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (2) 

 
(ii) Maxwell electromagnetic stress ijτ  is given by: 
 

 
=ij e i j j i k k ijH h H h H hτ µ δ⎡ ⎤+ − ⋅⎣ ⎦  (3) 

 
(iii) the equation of motion: 
 

 , =ji j i iF uσ ρ+  (4) 
 
which tends to: 
 

 
( ), , 1 ,1 =i jj j ij i i iu u T F u

t
µ λ µ γ τ ρ∂⎛ ⎞+ + − + +⎜ ⎟∂⎝ ⎠

 (5) 

 
where: 
 

 =F J B
→ → →

×  (6) 
 

Consider that the medium is a perfect electric 
conductor, we take the linearized Maxwell equations 
governing the electromagnetic field, taking into account 
absence of the displacement current (SI) as the form [35]: 

 

 =curlh J
→

 (7a) 
 

 
= e

hcurlE
t

µ ∂
−

∂
 (7b) 

 

 = 0divh  (7c) 
 

 = 0divE  (7d) 
 
where: 
 

 
= oh curl u H

→ → →⎛ ⎞
×⎜ ⎟

⎝ ⎠
 (8) 

where we have used: 
 

= oH H h
→ → →

+  
 

the constant primary magnetic field oH
→

 acting on y  
direction: 
(iv) the equation of heat conduction: 

 

 

2

0

0

= 1

1

v

o ij

K T C T
t

T u
t

ρ τ

γ τ δ

→

→ →

∂⎛ ⎞∇ + +⎜ ⎟∂⎝ ⎠
∂⎛ ⎞+ ∇⋅ +⎜ ⎟∂⎝ ⎠

 (9) 

 
which tends to: 

 

 

, 0

0

= 1

1

kk v

o kk

KT C T
t

T e
t

ρ τ

γ τ δ
→

∂⎛ ⎞+ +⎜ ⎟∂⎝ ⎠
∂⎛ ⎞+ ∇⋅ +⎜ ⎟∂⎝ ⎠

 (10) 

 
For GL model, the relaxation times oτ  and 1τ  satisfy 

the inequality 0τ   1τ  > 0 , = 0δ . 
For two-dimensional motion in (x-z) plane, the 

equations (5) and (10) can be written as: 
 

 

( ) ( )2 2
1,11 3,13

1,33 1 ,1 1

2

1 =

e o e oH u H u

u T u
t

λ µ µ λ µ µ

µ γ τ ρ

+ + + + + +

∂⎛ ⎞+ − +⎜ ⎟∂⎝ ⎠

 (11) 

 

 

( ) ( )2 2
3,33 1,31

3,11 1 ,3 3

2

1 =

e o e oH u H u

u T u
t

λ µ µ λ µ µ

µ γ τ ρ

+ + + + + +

∂⎛ ⎞+ − +⎜ ⎟∂⎝ ⎠

 (12) 

 

 

2 2

2 2

0 0

=

1v

T TK
x z

T u wC T
t t t x z

ρ τ γ

⎛ ⎞∂ ∂
+⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (13) 

 
To transform the equations (11)-(13) into 

non-dimensional form, we take the following 
dimensionless form: 
 

 

( )
0 1 1

0
2

0

= , = , = , = ,

2
=

'' ' ' '

e o'

T v v vT t t
T

H u
u

T

τ τ τ τ

λ µ µ

γ

+ +
 (14a) 
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( )2

0

0 0

2
= , = , =,

= , =

e o' ' '

ij ij' '
ij ij

H wx zx z w
T

T T

λ µ µ

γ
σ τ

σ τ
γ γ

+ +

 (14b) 

 
Substituting from equations (14) into equations 

(11)-(13) and suppressing the primes, we obtain: 
 

 

( ) ( )2 2 2 2
2 1 2

2
2
1 1 21 =

C u C C u

uC T
t t

τ

∇ + − ∇ ∇⋅ +

∂ ∂⎛ ⎞− + ∇⎜ ⎟∂ ∂⎝ ⎠

 (15) 

 

 

2 2
3 01 = 0C T T u

t
τ ∂⎛ ⎞∇ − + −∈∇⋅⎜ ⎟∂⎝ ⎠

 (16) 

 

   

2 2
2 2

12 2
1 1

= 1 2 1 2ij ij ij
C C

u T e
tC C

σ τ δ
⎡ ⎤⎛ ⎞ ∂⎛ ⎞− ∇ ⋅ − + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

 (17) 

 
where: 
 

 

2
2 2
1 22 2

2
2 0
3 2 2

2
= , = ,

= , =
2

e o

v e o

H
C C

TKC
C H

λ µ µ µ
ρυ ρυ

γ
ρ υ λ µ µ

+ +

∈
+ +

 (18) 

 
The displacement components 1u and 3u  may be 

written in terms of scaler and vector potential functions 
φ  and ψ  respectively as follow: 

 

 =u φ ψ
→ → → →

∇ +∇×  (19) 
 
which take the form: 
 

 
1 3= , =u u

x z z x
φ ψ φ ψ∂ ∂ ∂ ∂
− +

∂ ∂ ∂ ∂
 (20) 

 
Substituting from equations (20) into equations 

(15)-(17), we get: 
 

 

2
1 2

1
1 = 0T

t C
φφ τ ∂⎛ ⎞∇ − + −⎜ ⎟∂⎝ ⎠

 (21) 

 

 

2
2
2

=
C
ψψ∇  (22) 

 

 

2 2 2
3 01 = 0C T T

t
τ φ∂⎛ ⎞∇ − + −∈∇⎜ ⎟∂⎝ ⎠

 (23) 

From equations (21)-(23) we see that SV-wave does 
not affect by the thermal and magnetic fields but P-wave 
has been affectd. The solution of equation (22) 
corresponds to the propagation of SV-wave with velocity 

3C . 
For plane P-wave,T-wave and SV-wave, respectively, 

in x-z plane (as shown in Fig. 1) of a linear isotropic 
homogeneous thermoelastic solid with influence of 
magnetic field we have. 

 

 

 
Fig. 1. Schematic of the problem 

 
Eliminating the temperature from equations (21) and 

(23), one may obtain: 
 

 

2
1 0

2 2 4
1 3

2
1 3

2
0

1

1

1 = 0

C
t

C C
C

t

t

τ
φ

τ

φ τ φ

⎡ ∂ ⎤⎛ ⎞+ +⎜ ⎟⎢ ⎥∂⎝ ⎠⎢ ⎥∇ − ⋅
⎢ ⎥∂⎛ ⎞+∈ + +⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦
∂⎛ ⎞⋅∇ + +⎜ ⎟∂⎝ ⎠

 (24) 

 
choosing ( )= 0, ,0 ,ψ ψ  then equation (22) tends to: 
 

 

2
2
2

=
C
ψψ∇  (25) 

 
For analytical solution of equation (24) in the form of 

the harmonic travelling wave, we suppose that the 
solution takes the form: 

 

 
( )= i k x sin z cos tAe θ θ ωφ − −⎡ ⎤⎣ ⎦  (26) 

 
where, A  is arbitrary constant and ( ),sin cosθ θ  
denotes the projection of the wave normal onto xz -plane. 

Substitute equation (26) into equation (24), one obtain: 
 

 
2 2 4 2 2 2 3
1 3 1 0 1 3 0 = 0'C C k C C kτ τ ω τ ω⎡ ⎤− +∈ + +⎣ ⎦  (27) 

 
where: 

0 0 1 1= 1 , = 1' 'i iτ ωτ τ ωτ− −  
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Solving equation (27), one may obtain the roots 2
1k  

and 2
2k  as follow: 

 

 
2 2 2 2
1 2= and =k p k qω ω  (28) 

 
where: 
 

 
( ){ }2 2 2 2

0 1 1 32 2
1 3

1, =
2

' 'p q C C M
C C

τ τ⎡ ⎤+∈ + ±⎢ ⎥⎣ ⎦
 (29) 

 

 
( ){ }22 2 2 2

0 1 1 3 0 1 3= 4' ' 'M C C C Cτ τ τ ω+∈ + −  (30) 

 
where, 2

1k  and 2
2k  indicate to modified longitudinal 

P−wave and a thermal T −wave respectively. 
The solution of equation (25) takes the form: 
 

 
( )3= ik x sin z cos tBe θ θ ωψ − −⎡ ⎤⎣ ⎦  (31) 

 
where: 
 

 

2
2
3 2

2
=k

C
ω  (32) 

III. Case I: Plane P-Wave Incident Upon a 
Plane Surface 

Due to the existing of three waves reflected from 
incident P-wave or SV-wave as shown in Fig. 1, we take 
into our consideration, if the wave normal of the incident 
wave makes angle oθ  with the negative direction of 
z-axis, and those of reflected P, T and SV-waves make 

1 2 3, , ,θ θ θ  also with z− axis, the displacement potentials 
φ  and ψ  and temperature T   take the following 
forms: 
 

 

( )
( )
( )

1

1 1 1 1

2 2 2 2

= o o oA exp ik x sin z cos i t

A exp ik x sin z cos i t

A exp ik x sin z cos i t

φ θ θ ω

θ θ ω

θ θ ω

⎡ ⎤− − +⎣ ⎦
+ + − +⎡ ⎤⎣ ⎦
+ + −⎡ ⎤⎣ ⎦

 (33) 

 

 

( )
( )
( )

1 1 1 1 1

2 2 2 2 2

= o o o o oT A exp ik x sin z cos i t

A exp ik x sin z cos i t

A exp ik x sin z cos i t

ξ θ θ ω

ξ θ θ ω

ξ θ θ ω

⎡ ⎤− − +⎣ ⎦
+ + − +⎡ ⎤⎣ ⎦
+ + −⎡ ⎤⎣ ⎦

 (34) 

 

 ( )1 3 3 3= B exp ik x sin z cos i tψ θ θ ω⎡ ⎤+ −⎣ ⎦  (35) 
 
where: 
 

 

22
2 2
22 2 2

1 1 1 1

22
2 1

1 2 12 2 2
1 1 1 1

1 1= = 1 ,

1 1= = = 1

o ' '

' '

k
k

C C q

k
k

C C p

ωξ
τ τ

ωξ ξ
τ τ

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (36) 

 
oA  is the amplitudes of incident P-waves and 1,A  

2A  and 1B  are the amplitudes of reflected P, T and 
SV-waves, respectively. 

The boundary conditions at the free surface (i.e., 
= 0)z  take the form: 

 

 

= 0, = 0, = 0

= 0

zz zz xz xz
T hT
z

at z

σ τ σ τ ∂
+ + +

∂  (37) 

 
For the reflected waves, the wave numbers and the 

angles of incidence and reflected may be written as: 
 

 1 1 1 2 2 3 3= = =ok sin k sin k sin k sinθ θ θ θ  (38) 
 
which takes the equivalent form: 
 

 
1 2 3

2

1= = =o
qsin sin sin sin
p C p

θ θ θ θ  (39) 

III.1. Incident of P-Wave at a Stress-Free Thermally 
Insulated Boundary ( )0h →  

From equations (1)-(3) and (33)-(35) into the boundary 
conditions in equation (37), we obtain a system of three 
algebraic equations take the forms: 

 

 ( )= , , = 1, 2,3ij j iA X D i j∑  (40) 
 
where: 
 

 

2
2 2

11 2 12 2 2
1

2 2
12 1 1 2 2

1

1= 2 1 1 ,

1= 2 1 1

'

'

qA sin
p C q

A sin
C p

δ θ τ

δ θ τ

⎡ ⎤⎛ ⎞
− + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞

− + −⎜ ⎟⎜ ⎟
⎝ ⎠

 (41a) 

 

 

2

13 32 2
2

2

21 22

22 1 23 32 2
2

= 2 ,

= 2 ,

1= 2 , = 2

A sin
C p

qA sin
p

A sin A cos
C p

δ θ

θ

θ θ

−

−

 (41b) 
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3

31 23 2 2
1

32 1 312 2
1

1= 1 ,

1= 1 , = 0

qA cos
p C q

A cos A
C p

θ

θ

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

 (41c) 

 

jX  and jB  for incident P-wave may be written as: 
 

 1 12 2 22 3 32= , = , =D A D A D A−  (42) 
 

 

1 2 1
1 2 3= , = , =

o o o

A A B
X X X

A A A
 (43) 

 
Solving the equation (40), we obtain: 

 

2 2
1 1 2 2

1
1

1 3
2 2 2 2
1 2

12 1 1
2=

211

'sin
C p

X
cos cos

C p C p

δ θ τ

θ θ

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥− + − ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠
⎢ ⎥

∆ ⎛ ⎞⎢ ⎥
⋅ −⎜ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦  

3

2 2
1

2 22 1
2 3
2 2

1 22 2
1

1 1

2= 1 2 1
2

11'

q
p C q

X sin
cos cos

C p
C p

δ θ
θ θ

τ

⎤⎡ ⎛ ⎞⎛ ⎞ ⎥⎢ − ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎥⎢⎝ ⎠ ⎝ ⎠
⎥⎢

− ⎛ ⎞ ⎥− +⎢∆ ⎜ ⎟ ⎥⎢
⋅ ⎛ ⎞⎜ ⎟ ⎥⎢ + −⎜ ⎟⎜ ⎟ ⎥⎢ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎥⎝ ⎠⎣ ⎦

 

2 2
3 1 1 2 2

1

3

2 12 2
1

2

2 12 2
1

2 1= 2 1 1

1 1 2

1 1 2

'X sin
C p

q cos sin
p C q

q sin cos
p C p

δ θ τ

θ θ

θ θ

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥− + − ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∆ ⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

⎤⎡ ⎛ ⎞⎛ ⎞ ⎥⎢ − × +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎥⎢⎝ ⎠ ⎝ ⎠⋅ ⎥⎢
⎥⎛ ⎞⎢ ⎛ ⎞

− ⋅ −⎜ ⎟ ⎥⎢ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
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3 1 3
2 2 2 2

12 22 2
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2

12 2
1

2 2
2
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11 2
1
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1 1

2 1
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'

'

q cos
p C q
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q cos
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θ

δ θ
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τ

θ
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θ θ

τ

⎛ ⎞⎛ ⎞
∆ − ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎡ ⎛ ⎞− +
⎢ ⎜ ⎟ ⎤
⋅ − + +⎢ ⎛ ⎞⎜ ⎟ ⎥

+ −⎜ ⎟ ⎥⎢ ⎜ ⎟ ⎦⎜ ⎟⎜ ⎟⎢ ⎝ ⎠⎝ ⎠⎣

⎛ ⎞⎛ ⎞
+ − ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

− +
⎡
⋅ − +⎢

+ −⎢⎣

3
2 2
22

2cos
C p

θ
⎤⎛ ⎞
⎥⎜ ⎟

⎛ ⎞ ⎥⎜ ⎟
⎜ ⎟ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎥⎝ ⎠⎝ ⎠ ⎦

 (44) 

III.2. Incident of P-Wave at a Stress-Free Isothermal 
Boundary ( )h →∞  

The solution of equation (40), the amplitudes ratios can 
be written as: 

 

2 2
1 1 2 2

1
1 2 2

1
32 2

1

12 1 1
2= ,

1
2

1

'sin
C p

X
C p

cos
C q

δ θ τ

θ

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥− + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠
⎢ ⎥

∆ ⎛ ⎞⎢ ⎥−
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δ θ τ θ
⎡ ⎤⎛ ⎞⎛ ⎞
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1
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⎢ ⎥− + − ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∆ ⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
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2
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1

12 2 1 1
=

2 2
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'

'
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sin sin

C p q sin sin
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⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥− − + − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∆ +⎢ ⎥⎝ ⎠⎝ ⎠
⎢ ⎥
+⎢ ⎥⎣ ⎦

⎛ ⎞ ⎡−
− +⎜ ⎟ ⎢⎜ ⎟− ⎣⎝ ⎠

⎤⎛ ⎞⎛ ⎞⎛ ⎞
⎥− − + −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎦

 (45) 

IV. Case II: Plane SV-Wave Incident Upon 
a Plane Surface 

For incident SV-wave as shown in Fig. 1, the 
displacement potentials φ  and ψ  and temperature T   
take the following forms: 

 

 
( )
( )

1 1 1 1

2 2 2 2

= A exp ik x sin z cos i t

A exp ik x sin z cos i t

φ θ θ ω

θ θ ω

+ − +⎡ ⎤⎣ ⎦
+ + −⎡ ⎤⎣ ⎦

 (46) 

 

 
( )
( )

1 1 1 1 1

2 2 2 2 2

=T A exp ik x sin z cos i t

A exp ik x sin z cos i t

ξ θ θ ω

ξ θ θ ω

+ − +⎡ ⎤⎣ ⎦
+ + −⎡ ⎤⎣ ⎦

 (47) 

 

 
( )
( )

1

1 3 3 3

= o o oB exp ik x sin z cos i t

B exp ik x sin z cos i t

ψ θ θ ω

θ θ ω

⎡ ⎤− − +⎣ ⎦
⎡ ⎤+ + −⎣ ⎦

 (48) 

 
oB  is the amplitudes of incident SV-waves and 1,A  

2A  and 1B  are the amplitudes of reflected ,P T  and 
SV − waves, respectively. 
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For the reflected waves, the wave numbers and the 
angles of incidence and reflected may be written as: 

 

 3 1 1 2 2 3 3= = =ok sin k sin k sin k sinθ θ θ θ  (49) 
 
which takes the equivalent form: 
 

 
1 2 3

2 2
= = =o

p qsin sin sin sin
C C

θ θ θ θ  (50) 

IV.1. Incident of SV-Wave at a Stress-Free Thermally 
Insulated Boundary ( )0h →  

Solving the equation (40), we obtain: 
 

3
1

1 1 22 2 2 2
1 2 1

1 1= = 1 4
o

A pX sin cos
B C C C p

θ θ
⎡ ⎤⎛ ⎞

−⎢ ⎥⎜ ⎟⎜ ⎟∆ ⎢ ⎥⎝ ⎠⎣ ⎦
 

3
2

2 1 32 2 2 2
1 2 1

1 1= = 1 4
o

A qX sin cos
B C C C q

θ θ
⎡ ⎤⎛ ⎞

− −⎢ ⎥⎜ ⎟⎜ ⎟∆ ⎢ ⎥⎝ ⎠⎣ ⎦
 

1
3

3 2
3 22 2

11
2
1 2 3

2 32 2
1

= = 1

1 1 2
22

1 1 2

o

B
X

B

p q sin cos
C psin

C
p q sin cos

C q

θ θ
θ

θ θ

− +

⎤⎡ ⎫⎧ ⎛ ⎞
⎥⎢ ⎪− +⎪ ⎜ ⎟⎜ ⎟ ⎥⎢ ⎪⎪ ⎝ ⎠+ ⎥⎢ ⎨ ⎬

∆ ⎛ ⎞ ⎥⎢ ⎪ ⎪− −⎜ ⎟ ⎥⎢ ⎪ ⎪⎜ ⎟
⎝ ⎠ ⎥⎢ ⎩ ⎭⎣ ⎦

 

 

 

3
32 2

1

2 2
22

2
1 12 2 2

1

2
3

2 1 32 2 2
1 1

2 2
32

2
12 2 2

1

1= 1

2 1

11 2

1 1 2 2

2 1
211

'

'

q cos
C q

sin
p

cosC
C p

qp cos sin sin
C p C

sin
q cos
C

C q

θ

δ θ

τ θ

θ θ θ

δ θ
θ

τ

⎛ ⎞
∆ − ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
⎡ ⎤⎧ ⎫− +
⎢ ⎥⎪ ⎪⎪ ⎪⋅ +⎢ ⎛ ⎞ ⎥⎨ ⎬

+ −⎜ ⎟⎢ ⎥⎪ ⎪⎜ ⎟⎪ ⎪⎢ ⎥⎝ ⎠⎩ ⎭⎣ ⎦
⎛ ⎞ ⎡

+ − +⎜ ⎟ ⎢⎜ ⎟ ⎢⎝ ⎠ ⎣

⎧ ⎫− +
⎪ ⎪⎪ ⎪− ⎛ ⎞⎨ ⎬
+ −⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

1

⎤
⎥
⎥
⎥
⎥⎦

 (51) 

IV.2. Incident of SV-Wave at a Stress-Free Isothermal 
Boundary ( )h →∞  

The solution of equation (40), the amplitudes ratios can 
be written as: 

 
2 2
1

1 1 12 2 2 2
1 2 1

11 1= 2 2
1

C p
X sin cos

C C C q
θ θ

⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟⎜ ⎟∆ −⎢ ⎥⎝ ⎠⎣ ⎦

 

2 1 12 2
1 2

2 1= 2 2X sin cos
C C

θ θ
⎡ ⎤−
⎢ ⎥

∆ ⎢ ⎥⎣ ⎦
 

2

1 3
1

3 22 2
1

1 22 2
11

2 2
2= 1

1
2 2

1

q sin sin
C

X
C p p sin sin

CC q

θ θ

θ θ

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠

− + ⎢ ⎥
∆ ⎛ ⎞⎢ ⎥⎛ ⎞−

−⎜ ⎟⎢ ⎜ ⎟ ⎥⎜ ⎟− ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

 

 
2 2

2 2 1

1
2 2 2

1

2

1 2
1

2
2 2

3 12 2 22 2
2 11

2 2 2
1

1 1
1

2 1
2 11

=

2 2

12 1 1
1
1

2 2

'

'

sin
p cos

C
C p

p sin sin
C

q
sin

C C qC p
C q qcos sin si

C

δ θ τ
θ

θ θ

δ θ τ

θ θ

⎡ ⎤⎛ ⎞− + ⋅
⎢ ⎥⎜ ⎟⎛ ⎞

+⎢ ⎥⎛ ⎞⎜ ⎟⎜ ⎟
⋅ −⎜ ⎟⎢ ⎥⎝ ⎠ ⎜ ⎟⎜ ⎟⎜ ⎟∆ +⎢ ⎥⎝ ⎠⎝ ⎠

⎢ ⎥
⎛ ⎞⎢ ⎥

−⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

⎛ ⎞⎛ ⎞
− + − ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞− ⎝ ⎠⎝ ⎠−⎜ ⎟⎜ ⎟−⎝ ⎠ ⎛ ⎞

⋅ − ⎜ ⎟
⎝ ⎠

32n θ

⎤⎡
⎥⎢
⎥⎢
⎥⎢
⎥⎢
⎥⎢

⎢ ⎥⎣ ⎦

 (52) 

 
If one neglects influence of the magnetic field, thermal 

relaxation times, the results obtained are deduced the 
results obtained by Das et al., [34] with some 
modifications and slight change in symbols. 

Also, in the absence of the thermal field, magnetic 
field, relaxation times, the results obtained are deduced to 
the results obtained in Achenbach [36]. 

V. Numerical Results and Discussions 
For computational work, the following material 

constants at o
0 = 300 CT  are considered a copper 

material for an elastic solid with generalized thermoelastic 
solid: 

 
10 2 10 2

3 2

= 8.2 10 N /m , = 4.2 10 N/m

= 8.95 10 kg /m

,λ µ

ρ

× ×

×  

 
2 2 -1 -2

5 2

= 3.845 10 m K s

= 1.67 10 / , = 10
v

t

c

Kα ω−

×

×
 

 
Figs. 2-5 and Fig. 6-9 display the effects of magnetic 

field and thermal relaxation times on incident P-wave and 
SV-wave respectively; at a stress-free thermally insulated 
boundary ( )0h →  and at a stress-free isothermal 

boundary ( )h →∞ , on the reflection coefficients 

1 2/ , / ,o oA A A A  1/ oB A and 1 2/ , / ,o oA B A B  1/ oB B
respectively. 
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For the incident P-wave: at a stress-free thermally 
insulated boundary ( )0 ,h →  Fig. 2 shows the influence 
of magnetic field oH  on reflection coefficients respect 
with the angle of incidence θ  if the relaxation times give 
a constant value. It is obvious that the absolute values of 

1/ oA A  and 2/ oA A  increase with an increasing of the 
magnetic field but the absolute values of 1/ oB A  decreases 
with an increasing of .oH  Fig. 3 displays the effect of 
relaxation times on reflection coefficients for incidence 
P-wave with respect to the angle of incidence ,θ  it is 

seen that the magnitude values of reflection coefficient 
1/ ,oA A  2/ oA A  and 1/ oB A increase with an increasing of 

the relaxation times. At a stress-free isothermal boundary 
( )h →∞ , Fig. (4), (5) show the influence of magnetic 
field oH  and thermal relaxation times on reflection 
coefficients respect with the angle of incidence .θ It is 
seen that the absolute values of 1/ oA A , 2 / oA A  and 

1/ oB A  increase with an increasing of the magnetic field 
and relaxation times.  

 

 
 

 
 

 
Atastress – free thermally insulated boundary ( )0h →  

Figs. 2. Effect of the magnetic field on reflection coefficients for the incidence P  - wave, when 
5 5 5

0 1= 2 = 0.2, = 10 , = 3 10 ....., = 5 10o o oH H Hτ τ × × − −
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Atastress – free thermally insulated boundary ( )0h →  
Figs. 3. Effect of the relaxation times on reflection coefficients for the incidence P  - wave,where 

5
0 1 1 1 1= 10 , = 2 , = 0.1 , = 0.2....., = 0.3oH τ τ τ τ τ − −  

 

 

 
At astress - free isothermal boundary ( )h → ∞  

Figs. 4. Effect of the magnetic field on reflection on coefficients fot the incidence P  - wave, when 
5 5 5

1= 2 = 0.2, = 10 , = 3 10 ....., = 5 10o o o oH H Hτ τ × × − −  
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At astress -  free isothermal boundary ( )h → ∞  

Figs. 5. Effect of the relaxation on time sorce flection coefficients for the incidence P  - wave, when 
5

1 1 1 1= 10 , = 2 , = 0.1 , = 0.2....., = 0.3o oH τ τ τ τ τ − −
 

 

 

 
At a stress -  free thermally insulated boundary ( )0h →  

Figs. 6. Effect of the magnetic field on reflection coefficients for the incidence SV  - wave, when 
5 5 5

1= 2 = 0.2, = 10 , = 3 10 ....., = 5 10o o o oH H Hτ τ × × − −  
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At a stress -  free thermally insulated boundary ( )0h →  

Figs. 7. Effect of the relaxation times on reflection coefficients for the incidence SV  - wave, when
5

1 1 1 1= 10 , = 2 , = 0.1 , = 0.2....., = 0.3o oH τ τ τ τ τ − −
 

 

 

 
At astress – freeisothermalboundary ( )h →∞  

Figs. 8. Effect og the magnetic field on reflection coefficients for the incidence SV  - wave, when 
5 5 5

1= 2 = 0.2, = 10 , = 3 10 ....., = 5 10o o o oH H Hτ τ × × − −  
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At astress – freeisothermalboundary ( )h → ∞  

Figs. 9. Effect of the relaxation on time sonreflection on coefficients for 
the incidence SV  - wave, when

5
1 1 1 1= 10 , = 2 , = 0.1 , = 0.2....., = 0.3o oH τ τ τ τ τ − −

 
 

It is clear that , from Figs. 2, 3 that 1/ oA A  and 

2/ oA A  start from its primary value at at = 0oθ  and 

then tend to zero at = 90oθ  but 1/ oB A  starts and tends 

to zero at = 0 .oθ  From Figs. 4, 5, it appear that 1/ oB A  

starts from zero at = 0 .oθ  
For the incident SV-wave: at a stress-free thermally 

insulated boundary ( )0 ,h →  Fig. 6 shows the influence 
of magnetic field oH  on reflection coefficients respect 
with the angle of incidence θ  if the relaxation times are 

constant. It is shown that the absolute values of 1/ oA B  are 
decreased slight with an increasing of magnetic field, 

2/ oA B  decreases with an increasing of the magnetic field 
but the absolute values of 1/ oB B  increases with an 
increasing of .oH  Fig. 7 displays the effect of relaxation 
times on reflection coefficients for incidence SV-wave 
with respect to the angle of incidence ,θ  it is seen that 
the magnitude values of reflection coefficient 1/ oA B  and 

2/ oA B decrease with an increasing of the relaxation times 
but 1/ oB B  increases. At a stress-free isothermal 

boundary ( )h →∞ , Figs. 8, 9 show the influence of 
magnetic field oH  and thermal relaxation times on 
reflection coefficients respect with the angle of incidence 

.θ It is seen that the absolute values of 1/ oA A , and 1/ oB B  
increase with an increasing of the magnetic field and 
relaxation times but 2/ oA B  increases and then at a 
critical value decreases with an increasing of the magnetic 
field, also, it is appear that 2/ oA A  assume decreases and 
then increases with an increasing of the thermal relaxation 
times. 

It is clear that from Fig. 6, 7 that 1/ oA B  and 2/ oA B  

start and tend to zero at { }= 0 ,90o oθ  but 1/ oB B  starts 

and tends to the unity at { }= 0 ,90 .o oθ  From Figs. 8, 9, it 

is clear that 1/ oA B  and 2/ oA B  start and tend to zero at 

{ }= 0 ,90 .o oθ  

Finally, it is shown that 1/ oA B , 2/ oA B  and 1/ oB B  
have a critical value for the angle of incidence θ  and 
change their paths with an increasing of .θ  

VI. Conclusion 
The main conclusions due to the influences of the 

magnetic field and thermal relaxation times on the 
reflection of P and SV-waves, can be summarized as 
follow: 

The reflection coefficients are affected strongly by the 
angle of incidence ,θ  magnetic field and thermal 
relaxation times. The magnetic field affected strongly on 
the absolute values of all reflection coefficients unless 

1/ oB A  for P-wave and 1/ oA B  for SV-wave at a 

stress-free thermally insulated boundary ( )0h →  there 
is a slight affect. The thermal relaxation times affected 
strongly on all values of the reflection coefficients. 
Finally, it is seen that the angle of incidence θ  affects 
very strong on all values of the reflection coefficients and 

= 45oθ  displays a critical value for the reflection 
coefficients in SV-wave At a stress-free isothermal 
boundary ( )h →∞ . Finally, it is too clear that all 
operators are affected on the amplitude ratios, which have 
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a good influence on Seismic waves, Earthquakes, 
Geophysics, Volcanos, Plasma, Geometrical Geology, 
Nuclear fields, Geology and etc.  
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Influence of Initial Stress as a Convective Boundary Condition 
on Natural Frequencies of a Poroelastic Hollow Cylinder 

 
 

A. M. El-Naggar1, Ibrahim A. Abbas2, S. M. Abo-Dahab3, M. Elsagheer4 

 
 
Abstract – In this paper, we study the radial vibrations of a poroelastic hollow cylinder with 
convective boundary conditions. Biot's theory is employed for wave propagation in a porous solid, 
the frequency equation for radial vibration of a poroelastic cylinder is obtained includes initial 
stress as a convective boundary condition. The frequency equation has been derived in the form of a 
determinant form involving Bessel functions. The root of the frequency frequency equation 
determines the circular frequency. Special case from this study is investigated if the initial stress is 
neglected. The numerical computations of the frequency equations for the radial vibrations of a 
poroelastic cylinder is obtained and are illustrated graphically. It is found the frequency equation of 
the waves has been affected by the poroelasticity and the initial stress which indicated that their very 
pronounced on the natural frequency. Copyright © 2011 Praise Worthy Prize S.r.l. - All rights 
reserved. 
 
Keywords: Natural Frequencies, Poroelastic Hollow Cylinder, Initial Stress, Convective 
 
 

Nomenclature 
1 Kα δ= −  Is the elastic coefficient 

β  Is the porosity 
γ  Is the coefficient of fluid content 

δ  Is the unjacketed compressibility 

∈  Is the unjacketed compressibility 

andλ µ  Are the Lame,s parameters 

11 12 22and,α α α  Define the elastic properties of the 
material 

11 11 11andβ β β  Define its dynamic properties 
ρ  Is the mass per unit volume of the 

fluid-solid aggregate 
fρ  Is the density of the solid material

sρ  Is the density of the fluid material

( )11 12 1 sρ ρ β ρ+ = −  Is the mass per unit volume of the 
fluid 

11 12 fρ ρ βρ+ =  Is the mass per unit volume of the 
solid 

12ρ  Is a mass coupling parameter 
between the fluid and the solid 

ijτ  Is the components of stress tensor

Ω  Is the dimensionless parameter of 
frequency 

( )2A Mλ α β= + −  Is the material coefficients are 
related to the solid 

e  Is the expansion of the solid phase

2
3

K uλ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 
Is the jacketedin compressibility 

( ) 12M Kγ δ δ
−

= + −
Is the elastic coefficient 

oP  Is the pressure initial stress 

( )
2and

Q M

R M

β α β

β

= −

=
 

Are the material coefficients are 
related to the fluid 

S  Is the excess fluid pressure 

( )r zu u u ,uθ=  Is the displacement vector in the 
solid 

( )r , zv v v ,vθ=  Is the displacement vector in the 
fluid 

I. Introduction 
Theory of propagation of elastic waves in a system 

composed of a porous elastic solid saturated by a viscous 
fluid, it is assumed that the fluid is compressible and may 
flow relative to the solid causing friction to arise and the 
relative motion of the fluid in the pores is of the Poiseuille 
type. As already pointed out by Kirchhoff this is valid 
only below a certain frequency which we denote by ,tf  
and which depends on the kinematic viscosity of the fluid 
and the size of the pores. We have in mind particularly the 
application to cases where the fluid is a liquid, and we 
have therefore disregarded the thermoelastic effect. We 
include only materials such that the walls of the main 
pores are impervious and for which the pore size is 
concentrated around its average value. Extension to more 
general materials will be considered along with the 
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thermoelastic effect in a later and more complete theory.A 
theory is developed for the propagation of stress waves in 
a porous elastic solid containing a compressible viscous 
fluid. The emphasis of the present treatment is on 
materials where fluid and solid are of comparable 
densities as for instance in the case of water-saturated 
rock. It is restricted to the lower frequency range where 
the assumption of Poiseuille flow is valid. It is found that 
the material may be described by four nondimensional 
parameters and a characteristic frequency. There are two 
dilatational waves and one rotational wave. The physical 
interpretation of the result is clarified by treating first the 
case where the fluid is frictionless. The case of a material 
containing a viscous fluid is then developed and discussed 
numerically. Phase velocity dispersion curves and 
attenuation coefficients for the three types of waves are 
plotted as a function of the frequency for various 
combinations of the characteristic parameters.Biot's 
theory of poroelasticity is a solution of the problem of 
elastic wave propagation in fluid-saturated porous media. 
It can be used to compute seismic and sonic responses of 
fluid-saturated reservoirs through numerical modeling.  

In this work, Biot's equations are used for modeling 
wave propagation in 2D heterogeneous poroelastic media 
through a second-order accurate time, fourth-order 
accurate space, staggered-grid finite-difference scheme. 
For implementing the numerical scheme, Biot's equations 
are reformulated into a first-order system of four 
equations of motion and four constitutive equations, 
expressed explicitly in particle-velocity components, 
stresses and pore-fluid pressure. Results for a 
homogeneous medium illustrate the effect of some 
physical parameters on the slow wave propagation.  

In general, the porosity influences the velocity, and the 
viscosity to permeability ratio influences the attenuation 
of the slow wave. Besides, simulations in heterogeneous 
media, from poroelastic and an equivalent elastic 
modeling, are performed and compared, both in seismic 
and sonic ranges of frequencies.  

The results illustrate the effect of Biot's poroelasticity. 
Although the poroelastic effect is not apparent at seismic 
frequency, it is relevant at sonic frequency, and the use of 
this wave propagation theory may provide valuable results 
in sonic log inversion. 

Biot [4] was introduced the general theory of 
three-dimensional consolidation, and discussed theory of 
elasticity and consolidation for a porous an isotropic solid 
[7]. Biot [5] investigated general solutions of the 
equations of elasticity and consolidation for porous 
material. Biot [8],[9] introduced theory of propagation of 
elastic waves in a fluid-saturated porous solid part I: Low 
frequency range and part II Higher frequency range. Jones 
[18] studies Rayleigh waves in a porous elastic and 
saturated solid. Biot [6] explained generalized theory of 
acoustic propagation in porous dissipative media. 
Deresiewice [13] explained the effect of boundaries on 
wave propagation in a liquid-fluid porous solid and on 
surface waves in a half-space. Biot [10] studied nonlinear 
and semilinear rheology of porous solids. Paul [21] 

studied the displacements produced in a porous elastic 
half-space by an impulsive line load (nondissipative case) 
and [22] studied the disturbance produced in a semi- 
infinite poroelastic medium by a surface a load. Rice and 
Cleary [25] studied some basic stress-diffusion solutions 
for fluid-saturated elastic porous media with compressible 
constituents.Yew and Jogi [33] iterduced study of wave 
motions in fluid-saturated porous rocks. Bowen [11] 
discussed compressible porous media models by use of 
the theory of mixtures. Sharma and Gogna [29] studied 
seismic wave propagation in a viscoelastic porous solid 
saturated by viscous liquid. 

Philippacopoulos [23] studied Lamb's problem for 
fluid-saturated and porous media and [24] investigated 
wave in partially saturated medium due to surface loads. 
Seyed [27] studied model impedances for a spherical 
source in a fluid-fluid spherical cavity embedded within a 
fluid-infiltrated elastic porous medium. 

Yang and Sato [32] studied dynamic response of 
saturated layered half-space with different hydraulic 
interface conditions. Yang [31] studied importance of 
flow condition on seismic waves at a saturated porous 
solid boundary. Schanz and Cheng [26] discussed 
transient wave propagation in a one-dimensional 
poroelastic column. 

Wang [30] investigated theory of linear poroelasticity 
with applications to geomechanics and hydrogeology. 
Ciarletta [12] illustrated the reflection of plane waves by 
the free boundary of a porous elastic half space.  

Hassanien and etc [16] investigated variable viscosity 
and thermal conductivity effects on combined heat and 
mass transfer in mixed convection over of the case 
uniform heat flux (UHF) and uniform mass flux (UMF) 
wedge in porous media the entire regime. James and etc. 
[17]investigated transient reflection and transmission of 
ultrasonic wave in cancellous bone. Kaishin Liu and Ying 
Liua [19] discussed propagation characteristic of Rayleigh 
waves in orthotropic fluid saturated porous media. 
Abousleiman and Ekbote [2] solutions for the inclined 
borehole in a porothermoelastic transversely isotropic 
medium. Ying Liu and etc [34] isllated characteristic 
analysis of wave propagation in anisotropic 
fluid-saturated porous media. Abbas [1] referred to the 
natural frequencies of a poroelastic hollow cylinder which 
is considered a special case of this study. Pallavika and etc 
[20] introduced finite difference modeling of SH-wave 
propagation in multilayered porous crust.  

Sharma [28] discussed wave propagation in 
thermoelastic saturated porous medium. Bai [3] 
investigated consolidation solutions of a saturated 
porothermoelastic hollow cylinder with infinite length.  

Gaur and Sonia Rani [14]  studied surface wave 
propagation in non-dissipative porous medium. Gupta and 
etc [14] discussed the effect of initial stress on 
propagation of love waves in an anisotropic porous layer. 
In this paper, an attempt is made to investigate the radial 
vibrations of a poroelastic hollow cylinder with 
convective boundary conditions. Biot's theory [8] is 
employed for wave propagation in a porous solid, the 
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frequency equation for radial vibration of a poroelastic 
cylinder is obtained includes initial stress as convective 
boundary condition. The frequency equation has been 
derived in the form of a determinant form involving 
Bessel functions. The root of the frequency frequency 
equation determines the circular frequency. The special 
case if the initial stress is neglected is discussed from this 
study. The numerical computations of the frequency 
equations for the radial vibrations of a poroelastic cylinder 
is obtained and are illustrated graphically. 

II. Basic Equations 
Let us consider an infinite circular cylindrical bar of 

poroelastic material saturated in a fluid with longitudinal 
axis coinciding with the z axis−  of the cylindrical 
coordinate system ( ), ,r zθ . Inner and outer radii are a  
and b , respectively. The stress tensor is separated into 
two parts [8]. The first acting on the solid part and the 
second acting on the fluid part there are denoted as the 
following tensor: 

 

 

0 0
, 0 0

0 0

rr r rz

r z

rz z zz

S
S

S

θ

θ θθ θ

θ

σ τ τ
τ σ τ
τ τ σ

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪

⎩ ⎭⎩ ⎭

 (1) 

 
We denote the strain tensor in the solid by: 
 

 

1 1
2 2

1 1
2 2
1 1
2 2

rr r rz

r z

rz z zz

e

e

e

θ

θ θθ θ

θ

γ γ

γ γ

γ γ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 (2) 

 
where the strain-mechanical displacement relations in 
cylindrical coordinates take the form: 
 

 

1= , = ,

1= , = ,

1= , =

r r
rr r

r r z
rz

z z
zz z

u uu u
e

r r r r
u u u u

e
r r z r

uu u
e

z r z

θ θ
θ

θ
θθ

θ
θ

γ
θ

γ
θ

γ
θ

∂∂ ∂
+ −

∂ ∂ ∂
∂ ∂ ∂

+ +
∂ ∂ ∂

∂∂ ∂
+

∂ ∂ ∂

 (3) 

 
and we denote the strain in the fluid by: 
 

 

1= , = , =r r z
rr zz

vv v v
r r r z

θ
θθε ε ε

θ
∂∂ ∂

+
∂ ∂ ∂

 (4) 

 
where we can write: 
 
 = , =e divu divvε  (5) 

The stress relations for an isotropic poroelastic body in 
cylindrical coordinates take the form: 

 

 

= 2 , = ,
= 2 , = ,
= 2 , = ,

=

rr rr r r

rz rz

zz zz z z

Ne Ae Q Ne
Ne Ae Q Ne
Ne Ae Q Ne

S Qe R

θ θ

θθ θθ

θ θ

σ ε τ
σ ε τ
σ ε τ

ε

+ +
+ +
+ +

+

 (6) 

 
where: 
 

 
( )

( )

2

2

= = ,

= , =

N A M

Q M R M

µ λ α β

β α β β

+ −

−
 (7) 

 
and: 
 

 ( ) 12= 1 , =K M Kα δ γ δ δ
−

− + −  (8) 

 

 ( )11 12 11 12= 1 , =  s fρ ρ β ρ ρ ρ βρ+ − +  (9) 

 
 = , =rr zz rr zze e e eθθ θθε ε ε ε+ + + +  (10) 
 

The dynamic equations in cylindrical coordinates takes 
the form: 

 

 

( )

( )

( )

2

11 122

2

11 122

2

11 122

1

= ,

21

= ,

1

=

r rrrr rz

r r

r z r

zrz zz rz

z z

r r z r

u v
t

r r z r

u v
t

r r z r

u v
t

θ θθ

θ θθ θ θ

θ θ

θ

τ σ σσ τ
θ

ρ ρ

τ σ τ τ
θ

ρ ρ

ττ σ τ
θ

ρ ρ

∂ −∂ ∂
+ + + =

∂ ∂ ∂
∂

+
∂

∂ ∂ ∂
+ + + =

∂ ∂ ∂
∂

+
∂

∂∂ ∂
+ + + =

∂ ∂ ∂
∂

+
∂

 (11) 

 

 

( )

( )

( )

2

12 222

2

12 222

2

12 222

= ,

= ,

=

r r

z z

S u v
r t
S r u v

t
S u v
z t

θ θ

ρ ρ

ρ ρ
θ

ρ ρ

∂ ∂
+

∂ ∂
∂ ∂

+
∂ ∂
∂ ∂

+
∂ ∂

 (12) 

III. Solutions of the Problem 
The equations which are govern the wave propagation 

in a fluid-saturated porous body according to [8] are: 
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( )
( )
( ) ( )

11 12

12 22

2

= ,

=

A N e N u Q

u v

Qe R u v

ε

ρ ρ

ε ρ ρ

+ ∇ − ∇×∇× + ∇ =

+

∇ + +

 (13) 

 
Considering radial vibrations of the medium, the 

displacement vectors u  and v  has its only 
non-vanishing components ru  and rv  which are 
independent of θ  and ,z  while the other components 
are zero which take the form: 

 

 ( ) ( )= , , = ,r ru u r t v v r t  (14) 
 
so that the constitutive equations of the medium in thier 
axially symmetric form are: 

 

 

= 2 ,

= 2 ,

= ,

rr
uN Ae Q
r

uN Ae Q
r

S Qe R

θθ

σ ε

σ ε

ε

∂
+ +

∂

+ +

+

 (15) 

 
with: 
 

 
= , =u u v ve

r r r r
ε∂ ∂

+ +
∂ ∂

 (16) 

 
Thrtefore, from the above equations we get: 

 

 
( ) ( )

( )

11 12

12 22

2 = ,

=

eA N Q u v
r r

eQ R u v
r r

ε ρ ρ

ε ρ ρ

∂ ∂
+ + +

∂ ∂
∂ ∂

+ +
∂ ∂

 (17) 

 
let: 

 11 12 22

= 2 , = 2 ,
= 2

P A N H P R Q
ρ ρ ρ ρ

+ + +
+ +

 (18) 

 
From Eq. (14) it is defined the velocity of radial wave 

2 =c
Hυ
ρ

 in the aggregate under the condition that =e ε

, i.e., if the relative between fluid and solid were 
completely prevented in some way. 

We chose the following nondimenisonal: 
 

 11 12 22= , = , =P R Q
H H H

α α α  (19) 

 

 

11 12 22
11 12 22= , = , =

ρ ρ ρ
β β β

ρ ρ ρ
 (20) 

 
Then with the parameters, Eqs. (17) get: 

 

( )

( )

2

11 12 11 122 2

2

12 22 12 222 2

1= ,

1=

c

c

e u v
r r t

e u v
r r t

εα α β β
υ

εα α β β
υ
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+ +

∂ ∂ ∂

∂ ∂ ∂
+ +

∂ ∂ ∂

 (21) 

 
Substituting from Eqs. (7) and (8) into Eqs. (12) we 

obtain: 
 

 

( )

( )

2 2

11 122 2 2 2

2

11 122 2

2 2

12 222 2 2 2

2

12 222 2

1 1

1= ,

1 1

1=

c

c
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t
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t

α α
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υ
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β β
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∂ ∂∂ ∂⎣ ⎦ ⎣ ⎦

∂
+

∂

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂
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∂ ∂∂ ∂⎣ ⎦ ⎣ ⎦

∂
+

∂

 (22) 

 
For harmonic radial vibrations with frequency ω the 

Eqs. (22) are one solutions of the above equations in the 
following form: 

 

 ( ) ( )= , =i t i t
r ru u r e v v r eω ω  (23) 

 
Therefore Eqs. (22) get: 
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2 2
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2
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2 2
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2
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1 1
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1 1
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(24) 

 

where 2 2 2= ck ω υ
 
is a wave number. 

Solving Eqs. (24a) and (24b) we get: 
 

 

2

1 22 2

2

3 42 2

1 1 = 0,

1 1 = 0

d u du a u a v
r rdr r

d v dv a v a u
r rdr r
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where (eq. (26)): 
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Eqs. (25) are decupled using simple manipulation to 
yield: 

 

 

2 2
2 2
1 22 2 2 2

1 1 1 1 = 0d d d ds s u
r dr r drdr r dr r

⎡ ⎤ ⎡ ⎤
+ − + + − +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (27) 

 

where 2 2
1 2,s s are the roots of the following algebraic 

equation: 

 ( )4 2
1 3 1 3 2 4 = 0s a a s a a a a− + + −  (28) 

 
The general solutions of Eq. (15) may be expressed as: 
 

  ( ) ( ) ( ) ( )1 1 1 1 1 1 2 1 2 2 1 2=u A J s r B Y s r A J s r B Y s r+ + +  (29) 
 

  
( ) ( ) ( ) ( )1 1 1 1 1 1 2 1 2 2 1 2=v C J s r D Y s r C J s r D Y s r+ + +  (30) 

 
where 1 2, 1 2 1 2, 1, , , , ,A A B B C C D and 2D are arbitrary 
constants and 1J and 1Y are Bessel functions of the first 
and second kind of order one. 

The constant C  and D are related with A  and B  
as follow: 

 

 
[ ] [ ]

2
1

2
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 (31) 

 
The boundary conditions are the follows: 
 

   0= and = = and =rr oP S P at r a r bσ −  (32) 
 

From Eq. (32): 
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where: 
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IV. Numerical Results and Discussions 
It is obvious that equation (24) involves the dimensions 

a  and b  of the cylinder, the wave number k  . To 
simplify the calculation of this equation we confine our 
attention to make these quantities dimensionless, 
therefore we introduce the following transformations: 
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The equation (24) gets: 
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where: 
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 (35) 

 
For computational work, the following poroelastic 

material with the parameters [29], [33]: 
 

11 2

11 2

3

= 0.3032 10 dynes /cm

= 0.922 10 dynes /cm

= 2.66 gm/cms

λ

µ

ρ

×

×
 

 

( )
( )

3

111 2

111 2

= 1 gm/cm

= 0.7378 10 dynes/cm

= 0.889 10 dynes/cm

fρ

δ

γ

−−

−−

×

×  

 
Figs. 1-3 display the variations of the velocities u  and 

v , S  and σ  under influences of the 12ρ , β  and Ω  
resspetively, respect to the radius r  

From Fig. 1, it is appear that the horizontal velocity u  
and the stress σ  are decreased with an increasing of the 
radius r  arrives to zero for the high values, its obvious 
that it decrease with an increasing of the mass coupling 
parameter 12ρ  and it is seem that σ  match with the the 
large values of r  for varies values of 12 .ρ  

Also, it is obvious that the vertical velocity v  and the 
flud porosity S  are increased with the increased values 

of r , there is a slight increase in v  with an increasing of 
12ρ  but S  increased with an increaing of 12ρ  for the 

small values of r  and then decreases with increasing of 
the radius .r  

From Fig. 2, it is seen that u  and σ  are decreased 
with the increased values of the radius r  and the porosity 
β  but the velocity v  and S  are increasing with the 
increasing of the radius r  and the porosity .β  

It is shown that from Fig. 3, that horizontal velocity u  
and the stress σ  are decreased clearly with an increasing 
of the radius r , its obvious that it decrease with an 
increasing of the dimensionless parameter of frequency 
Ω  and it is seem that σ  match with the the large values 
of r  for varies values of . Ω . 

Also, it is obvious thatthe vertical velocity v  and the 
flud porosity S  are increased with the increased values 
of r , there is a an increase in v  with an increasing of β  
but S  increased with an increaing of β  for the small 
values of r  and then decreases with increasing of the 
radius .r  

V. Special Case 
If the initial stress is neglected, Eq. (33) takes the form: 
 

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

= 0

X X X X
X X X X
X X X X
X X X X

 (36) 
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Fig. 1. Variations of the displacements component u  and v  , excess 
fluid pressure S  and the stress in the solid σ  respect to the radius r  

with varies values of mass parameter coupling 12ρ  
 
 

 
 

 
 

Fig. 2. Variations of the displacements components u  and v  , excess 
fluid pressure S  and the stress in the solid σ  respect to the radius r  

with varies values of the porosity β  
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The root of Eq. (36) determines the circular frequency 
Ω  which displays grphically in Fig. 4 and the varies 
values of the determinant (36) computed numerically and 
displayes graphically with the varies values of 12 ,ρ  Ω
and β  in Figs. 5 and 6. 

From Fig. 4, it is clear that the circular frequency Ω  
decrease with an increasing of the thichness h  but 
increase with an increasing of the mass parameter 
coupling 12ρ  and the porosity .β  

Figs. 5 and 6 display the varies values of the 
determinant ∆ with the varies values of the mass 
parameter coupling 12ρ , the porosity β  and circular 
velocity Ω  respect to the thichness .h  It is obvious that 
∆  increase with an increasing of h  and the circular 
frequency Ω , also, it is shown that ∆  decrease with the 
mass parameter coupling 12ρ  and the porosity β  for 
the small values of h  and then increase with the high 
values of the thichness. 

 
 
 

 

 
 

 

 

 

 
Fig. 3. Variation of the displacements components u  and v  , excess fluid pressure S  and the stress in the solid σ  respect to the other radius r  

with varies values of the circular frequency Ω  
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Fig. 4. Variations of the circular frequency Ω  respect to thickness h  with varies values of 12 andρ β
 

 

 

 

 
 

Fig. 5. Variations of the determinant ∆  respect the thickness h  with 
varies values of 12 , andρ β Ω  

 

 
 

Fig. 6. Variations of the determinant ∆  respect to

( ) ( ) ( )
12

h, , h , and h ,ρ β Ω  
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