Preferred Language
Articles
/
ZBdqPo8BVTCNdQwCimWd
Hybrid approaches to feature subset selection for data classification in high-dimensional feature space
...Show More Authors

This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spent to achieve the best classification accuracy.

Crossref
View Publication
Publication Date
Wed Mar 16 2022
Journal Name
Journal Of Educational And Psychological Researches
The Effectiveness of Cognitive Behavioral Program in Reducing Stuttering and Social Anxiety among High-School Students
...Show More Authors

The current study aims to assess the effectiveness of the cognitive-behavioral programs in reducing stuttering and social anxiety among high-school students. The researchers used the experimental design. The sample consists of (20) male students who reported the highest score on the stuttering severity scale and social anxiety scale. The sample was divided into experimental and control groups (each group consists of 10 participants). The researcher used the type and severity of stuttering scale developed by Onslow et al (2003), translated by Mahmoud Ismail and the social anxiety scale was prepared by the authors. The results showed that there are statistically significant differences in pre-post and follow-up tests amongst the experiment

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 13 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Effect of Obesity and Socioeconomic Status on Adolescents' High School Students' Intelligence Quotient in Baghdad City
...Show More Authors

Objective(s): To determine the effect of obesity and socioeconomic status upon adolescents' high school students' intelligence quotient in Baghdad City. Methodology: A descriptive design is carried throughout the study to determine the effect of obesity and socioeconomic status on adolescents' high schools students' intelligence quotient in Baghdad City for the period of January 7th 2017 to May 29th 2017. A non-probability, purposive sample, of (120) high school students, is selected. The sample is comprised of (12) students from 7th grade, (26) students from 8 th grade, (14) students from 9th grade, (3

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 29 2020
Journal Name
Iraqi Journal Of Science
High AdiponectinHormone Modulation ofBlood Erythroid Parameters and its Relation with Erythropoietin in Patients with Diabetic Nephropathy
...Show More Authors

Background: Serum adiponectin is a hormone of adipose tissue that activateslipid metabolism and exertsphysiological functions. Its level usually fluctuates in several metabolic diseases,including renal insufficiency and diabetes; it loses its protective role against diseases and becomes a potentially risk factor for erythroid abnormalities.

Objectives: The study was designed to assess the association between adiponectin  hormone, blood erythroid and various parameters in groups of patients.

Method:The study included 130 patientsand 42 healthy subjects. Parameters of serum adiponectin, erythropoietin (EPO), red blood cells (RBC), hemoglobin (Hb), hematocrit (Hct), ren

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Oct 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some robust methods in the presence of problems of multicollinearity and high leverage points
...Show More Authors

Abstract

The multiple linear regression model of the important regression models used in the analysis for different fields of science Such as business, economics, medicine and social sciences high in data has undesirable effects on analysis results . The multicollinearity is a major problem in multiple linear regression. In its simplest state, it leads to the departure of the model parameter that is capable of its scientific properties, Also there is an important problem in regression analysis is the presence of high leverage points in the data have undesirable effects on the results of the analysis , In this research , we present some of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 31 2022
Journal Name
Journal Of Computational Innovation And Analytics (jcia)
PERFORMANCE MEASURE OF MULTIPLE-CHANNEL QUEUEING SYSTEMS WITH IMPRECISE DATA USING GRADED MEAN INTEGRATION FOR TRAPEZOIDAL AND HEXAGONAL FUZZY NUMBERS
...Show More Authors

In this paper, a procedure to establish the different performance measures in terms of crisp value is proposed for two classes of arrivals and multiple channel queueing models, where both arrival and service rate are fuzzy numbers. The main idea is to convert the arrival rates and service rates under fuzzy queues into crisp queues by using graded mean integration approach, which can be represented as median rule number. Hence, we apply the crisp values obtained to establish the performance measure of conventional multiple queueing models. This procedure has shown its effectiveness when incorporated with many types of membership functions in solving queuing problems. Two numerical illustrations are presented to determine the validity of the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimate the Parameters and Related Probability Functions for Data of the Patients of Lymph Glands Cancer via Birnbaum-Saunders Model
...Show More Authors

 In this paper,we estimate the parameters and related probability functions, survival function, cumulative distribution function , hazard function(failure rate) and failure  (death) probability function(pdf) for two parameters Birnbaum-Saunders distribution which is fitting the complete data for the patients of  lymph glands cancer. Estimating the parameters (shape and scale) using (maximum likelihood , regression quantile and shrinkage) methods and then compute the value of mentioned related probability  functions depending on sample from real data which describe the duration of survivor for patients who suffer from the lymph glands cancer based on diagnosis of disease or the inter of patients in a hospital for perio

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Evolution and set up the maps for solar radiation of Iraq using Data observation and Angstrom model during monthly July2017
...Show More Authors
Abstract<p>The development that solar energy will have in the next years needs a reliable estimation of available solar energy resources. Several empirical models have been developed to calculate global solar radiation using various parameters such as extraterrestrial radiation, sunshine hours, albedo, maximum temperature, mean temperature, soil temperature, relative humidity, cloudiness, evaporation, total perceptible water, number of rainy days, and altitude and latitude. In present work i) First part has been calculated solar radiation from the daily values of the hours of sun duration using Angstrom model over the Iraq for at July 2017. The second part has been mapping the distribution of so</p> ... Show More
View Publication
Crossref (1)
Scopus Crossref
Publication Date
Wed Oct 28 2020
Journal Name
Iraqi Journal Of Science
Community Detection under Stochastic Block Model Likelihood Optimization via Tabu Search –Fuzzy C-Mean Method for Social Network Data
...Show More Authors

     Structure of network, which is known as community detection in networks, has received a great attention in diverse topics, including social sciences, biological studies, politics, etc. There are a large number of studies and practical approaches that were designed to solve the problem of finding the structure of the network. The definition of complex network model based on clustering is a non-deterministic polynomial-time hardness (NP-hard) problem. There are no ideal techniques to define the clustering. Here, we present a statistical approach based on using the likelihood function of a Stochastic Block Model (SBM). The objective is to define the general model and select the best model with high quality. Therefor

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jul 14 2023
Journal Name
International Journal Of Information Technology &amp; Decision Making
A Decision Modeling Approach for Data Acquisition Systems of the Vehicle Industry Based on Interval-Valued Linear Diophantine Fuzzy Set
...Show More Authors

Modeling data acquisition systems (DASs) can support the vehicle industry in the development and design of sophisticated driver assistance systems. Modeling DASs on the basis of multiple criteria is considered as a multicriteria decision-making (MCDM) problem. Although literature reviews have provided models for DASs, the issue of imprecise, unclear, and ambiguous information remains unresolved. Compared with existing MCDM methods, the robustness of the fuzzy decision by opinion score method II (FDOSM II) and fuzzy weighted with zero inconsistency II (FWZIC II) is demonstrated for modeling the DASs. However, these methods are implemented in an intuitionistic fuzzy set environment that restricts the ability of experts to provide mem

... Show More
View Publication
Scopus (11)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
Development of a Job Applicants E-government System Based on Web Mining Classification Methods
...Show More Authors

     Governmental establishments are maintaining historical data for job applicants for future analysis of predication, improvement of benefits, profits, and development of organizations and institutions. In e-government, a decision can be made about job seekers after mining in their information that will lead to a beneficial insight. This paper proposes the development and implementation of an applicant's appropriate job prediction system to suit his or her skills using web content classification algorithms (Logit Boost, j48, PART, Hoeffding Tree, Naive Bayes). Furthermore, the results of the classification algorithms are compared based on data sets called "job classification data" sets. Experimental results indicate

... Show More
View Publication Preview PDF
Scopus (5)
Scopus Crossref