In this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of societies and their medical information, the identification of nodes, the method of communication with individuals and their spread, the analysis of their transmission through complex networks, and the detection of mathematical methods over the past century. Secondly, the types of epidemiological models and complex networks and the extent of their impact on humans are presented.
Sensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any inte
... Show MoreAt the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance pena
... Show MoreEvolutionary algorithms are better than heuristic algorithms at finding protein complexes in protein-protein interaction networks (PPINs). Many of these algorithms depend on their standard frameworks, which are based on topology. Further, many of these algorithms have been exclusively examined on networks with only reliable interaction data. The main objective of this paper is to extend the design of the canonical and topological-based evolutionary algorithms suggested in the literature to cope with noisy PPINs. The design of the evolutionary algorithm is extended based on the functional domain of the proteins rather than on the topological domain of the PPIN. The gene ontology annotation in each molecular function, biological proce
... Show MoreEmotion could be expressed through unimodal social behaviour’s or bimodal or it could be expressed through multimodal. This survey describes the background of facial emotion recognition and surveys the emotion recognition using visual modality. Some publicly available datasets are covered for performance evaluation. A summary of some of the research efforts to classify emotion using visual modality for the last five years from 2013 to 2018 is given in a tabular form.
KE Sharquie, JR Al-Rawi, AA Noaimi, MM Jabir, Iraqi Postgraduate Medical Journal, 2009