Environmental sustainability is described as one that avoids the depletion or deterioration of natural resources, while also allowing for the preservation of long-term environmental quality. By practicing environmental sustainability, we may assist to guarantee that the requirements of today’s population are satisfied without risking the capacity of future generations to meet their own needs in the future. Engineers in the field of concrete production are becoming increasingly interested in sustainable development, which includes the utilization of the locally available materials in addition to using the agricultural and industrial waste in construction industry as one of the possible solutions to the environmental and economic issues. This study investigated the effect of partial substitution of cement with recycled glass powder (0, 15, 20, and 25%) by weight of cement at various ages (on compressive strength) after determining the optimal ratio of replacement. This optimal ratio is used to study its effect on some mechanical properties (such as flexural strength, absorption, and dry density) of reactive powder concrete containing 1% micro steel fiber (SRPC), and furthermore, utilizing steam curing for 5 h at 90°C after hardening the sample directly. Reactive powder concrete (RPC) has been designed with the use of the local cement, silica fume, and super plasticizer with a water/cement ratio of 0.20 in order to achieve a compressive strength of 137.09 MPa at the age of 28 days. When recycled glass powder replacement (20%) was utilized, the findings revealed that the compressive strength of RPC improved by 4.2%, the flexural strength increased by 15.3%, the dry density increased by 0.61%, and the absorption was reduced by 32% at 28 days after the test results were compared to the reference mix.
In this work, p-n junctions were fabricated from highly-pure nanostructured NiO and TiO2 thin films deposited on glass substrates by dc reactive magnetron sputtering technique. The structural characterization showed that the prepared multilayer NiO/TiO2 thin film structures were highly pure as no traces for other compounds than NiO and TiO2 were observed. It was found that the absorption of NiO-on-TiO2 structure is higher than that of the TiO2-on-NiO. Also, the NiO/TiO2 heterojunctions exhibit typical electrical characteristics, higher ideality factor and better spectral responsivity when compared to those fabricated from the same materials by the same technique and with larger particle size and lower structural purity.
Durability of hot mix asphalt (HMA) against moisture damage is mostly related to asphalt-aggregate adhesion. The objective of this work is to find the effect of nanoclay with montmorillonite (MMT) on Marshall properties and moisture susceptibility of asphalt mixture. Two types of asphalt cement, AC(40-50) and AC(60-70) were modified with 2%, 4% and 6% of Iraqi nanoclay with montmorillonite. The Marshall properties, Tensile strength ratio(TSR) and Index of retained strength(ISR) were determined in this work. The total number of specimens was 216 and the optimum asphalt content was 4.91% and 5% for asphalt cement (40-50) and (60-70) respectively. The results showed that the modification of asphalt cement with MMT led to increase Marsh
... Show MoreThis research investigated the effect of adding two groups of reinforcement materials, including bioactive materials Hydroxyapatite (HA) and halloysite nanoclay and bioinert materials Alumina (AL2O3) and Zirconia (ZrO2), each of them with various weight ratios (1,2,3,4 &5)% to the polymer matrix PMMA. The best ratios were selected, and then a hybrid was preparing Composite red from the best ratios from each group. Thermal properties, including thermal conductivity and Thermomechanical Analysis (TMA) technology, have been studied. The results showed that adding 3% Hydroxyapatite (HA) and 5% halloysite nanoclay to the polymethacrylate (PMMA) mer leads to an increase in thermal conductivity. It was also found from the Thermomechanical Analysis
... Show MoreThis study was performed by using the unsaturated polyester resin as matrix to the
composite materials with the rice husk as reinforced materials . The research included study
of wear test on the composite material The results show that the, wear is increased with the
increase of applied load and distance slipping and also with time increase . moreover the
shows that the higher value wear rate( 1.91gm/cm) from the load (20) N and the higher value
wear rate (1.43gm/cm) from the higher distance (4cm) and from the higher time (6min) higher
wear rate (5.33gm/cm).
The nanostructured MnO2 /carbon fiber (CF) composite electrode was prepared using the anodic electrodeposition process. The crystal structure and morphology of MnO2 particles were determined with X-ray diffraction and field-emission scanning electron microscopy. The electrosorptive properties of the prepared electrode were investigated in the removal of cadmium ions from aqueous solution, and the effect of pH, cell voltage, and ionic strength was optimized and modeled using the response surface methodology combined with Box–Behnken design. The results confirm that the optimum conditions to remove Cd(II) ions were: pH of 6.03, a voltage of 2.77 V, and NaCl concentration of 3 g/L. The experimental results showed a good fit for the Freundli
... Show MoreThe objective of the present paper is to examine the effect of Recycled Asphalt Pavement (RAP) on marshall properties and indirect tensile strength of HMA through experimental investigation. A mixture with 0% RAP was used as a control mix to evaluate the properties of mixes with 5%, 10%, and 15% RAP. One type of RAP was brought from Bab Al-moadam’s road in Baghdad for this purpose. The experimental testing program included Marshall and Indirect Tensile Strength tests. The results indicated that the bulk density, flow and VFA increase with the increasing of the percentage of RAP, while increasing in RAP results decreases in VTM and VMA values. Furthermore, the stability is changed from 10.1 kN for the control mix to12, 13.6 and 11.7 kN
... Show MoreThe primary objective of this study is to manage price market items in the construction of walls for affordable structures with load-bearing hollow masonry units using the ACI 211.1 blend design with a slump range of 25-50 mm that follows the specification limits of IQS 1077. It was difficult to reach a suitable cement weight to minimum content (economic and environmental goal), so many trail mixtures were cast. A portion (10-20%) of the coarse aggregates was replaced with concrete, tile, and clay-brick waste. Finally, two curing methods were used: immersion under water as normal curing, and water spraying as it is closer to the field conditions. The recommendation in IQS 1077 to increase the curing period from 14 to 28 days was tak
... Show MoreHot mix recycling of asphalt pavements is increasingly being used as one of the major rehabilitation methods by various highway agencies. Besides general savings in costs and energy expended, it also saves our natural resources and environment. Recycling process presents a sustainable pavement by using the old materials that could be reclaimed from the pavement; these materials could be mixed with recycling agents to produce recycled mixtures. The important expected benefits of recycling process are the conservation of natural resources and reduction of environmental impact. The primary objectives of this work are evaluating the Tensile and Shear Properties of recycled asphalt concrete mixtures, In addition to the
... Show MoreHigh Alumina Glasses "Alumina Silicate Glasses" was prepared by utilizing powder technology technique. The starting materials are wasted soda-lime glass from an industrial site, Iraqi Duekhla raw kaolin and small amounts of potassium carbonates.
X-ray Diffraction and FTIR analysis show complete vitreous glasses are obtained. Increasing Alumina content plays an obvious role in improving physical and mechanical properties of the prepared high alumina glass. In addition, the increased alumina content enhanced the dielectric constant and reduced dielectric loss. These results may be interpreted as du
... Show More