Preferred Language
Articles
/
ZBY9SIcBVTCNdQwCIkHf
Behavior of reactive powder concrete containing recycled glass powder reinforced by steel fiber
...Show More Authors
Abstract<p>Environmental sustainability is described as one that avoids the depletion or deterioration of natural resources, while also allowing for the preservation of long-term environmental quality. By practicing environmental sustainability, we may assist to guarantee that the requirements of today’s population are satisfied without risking the capacity of future generations to meet their own needs in the future. Engineers in the field of concrete production are becoming increasingly interested in sustainable development, which includes the utilization of the locally available materials in addition to using the agricultural and industrial waste in construction industry as one of the possible solutions to the environmental and economic issues. This study investigated the effect of partial substitution of cement with recycled glass powder (0, 15, 20, and 25%) by weight of cement at various ages (on compressive strength) after determining the optimal ratio of replacement. This optimal ratio is used to study its effect on some mechanical properties (such as flexural strength, absorption, and dry density) of reactive powder concrete containing 1% micro steel fiber (SRPC), and furthermore, utilizing steam curing for 5 h at 90°C after hardening the sample directly. Reactive powder concrete (RPC) has been designed with the use of the local cement, silica fume, and super plasticizer with a water/cement ratio of 0.20 in order to achieve a compressive strength of 137.09 MPa at the age of 28 days. When recycled glass powder replacement (20%) was utilized, the findings revealed that the compressive strength of RPC improved by 4.2%, the flexural strength increased by 15.3%, the dry density increased by 0.61%, and the absorption was reduced by 32% at 28 days after the test results were compared to the reference mix.</p>
Crossref
View Publication
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Engineering
Some properties of Reactive Powder Concrete Contain Recycled Glass Powder
...Show More Authors

Every year, millions of tons of waste glass are created across the globe. It is disposed of in landfills, which is unsustainable since it does not disintegrate into the environment. This study aims to produce reactive powder concrete by using recycled glass powder and determine the influence on the mechanical properties. This study investigated the effect of partial replacement of cement with recycled glass powder at two percentages (0, 20) % by weight of cement on some mechanical properties (Fresh density, Splitting tensile strength, Impact Strength, and voids%) of reactive powder concrete containing 1 % micro steel (MSRPC). Furthermore, using steam curing for (5 hours) at 90 degrees celsius after hardening the sample directly, RPC was

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Some Properties of Carbon Fiber Reinforced Magnetic Reactive Powder Concrete Containing Nano Silica
...Show More Authors

         This study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano silica. Tap water was used for 12 of these mixtures, while magnetic water was used for the others. The nano silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % by weight of cement, were used for all the mixtures. The results have shown that the mixture containing 2.5% NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results have shown that the carbon fiber reinforced magnetic reactive powder concrete containing 2.5% NS (CFRMRPCCNS) had higher compressive strength, modulus of rupture, splitting tension, str

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Engineering
Non-Destructive Testing of Carbon Fiber Reinforced Magnetic Reactive Powder Concrete Containing Nano Silica
...Show More Authors

This study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano Silica. Tap water has been used in mixing 12 of these mixtures, while the other 12 have been mixed using magnetic water. Nano Silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % were used. The results showed that the mixture containing 2.5%NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results showed that the fiber reinforced magnetic reactive powder concrete containing 2.5% NS (FRMRPCCNS)  has the higher bulk density, dynamic modulus of elasticity, ultrasonic pulse velocity  electrical resistivity and lesser absorption than fiber reinforced

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Influence of Waste Concrete and Glass Recycled on the Strength Properties of Green Reactive Powder Concrete
...Show More Authors

These days, the world is facing a global environmental and sustainability problem due to the increasing generation of large amounts of waste through construction and demolition work, which causes a serious problem for the environment. Therefore, this research was conducted to get rid of the waste disposal problems, including old glass and concrete, which were used as recycled fine aggregates. Seven different mixtures were prepared. The first mixture was with the used sand, which is glass sand, and it was adopted as a reference mixture (ORPC), and three mixtures were prepared for each of the recycled materials (waste concrete and glass) and partially replaced by glass sand in different proportions (25, 50, and 75) %. Some

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Journal Of Engineering
Flexural Behavior of Reinforced Rubberized Reactive Powder Concrete Beams under Repeated Loads
...Show More Authors

Non-biodegradability of rubber tires contributes to pollution and fire hazards in the natural environment. In this study, the flexural behavior of the Rubberized Reactive Powder Concrete (RRPC) beams that contained various proportions and sizes of scrap tire rubber was investigated and compared to the flexural behavior of the regular RPC. Fresh properties, hardened properties, load-deflection relation, first crack load, ultimate load, and crack width are studied and analyzed. Mixes were made using micro steel fiber of the straight type, and they had an aspect ratio of 65. Thirteen beams were tested under two loading points (Repeated loading) with small-scale beams (1100 mm, 150 mm, 100 mm) size.

The fine aggregate

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jul 04 2018
Journal Name
Civil Engineering Journal
Behavior of Reinforced Reactive Powder Concrete Two-Way Slabs under Static and Repeated Load
...Show More Authors

This paper studies the behavior of reinforced Reactive Powder Concrete (RPC) two-way slabs under static and repeated load. The experimental program included testing six simply supported RPC two-way slabs of 1000 mm length, 1000 mm width, and 70 mm thickness. All the tested specimens were identical in their material properties, and reinforcement details except their steel fibers content. They were cast in three pairs, each one had a different steel fibers ratio (0.5 %, 1 %, and 1.5 %) respectively. In each pair, one specimen was tested under static load and the other under five cycles of repeated load (loading-unloading). Static test results revealed that increasing steel fibres volume fraction from 0.5 % to 1 % and from 1% to 1.5%,

... Show More
View Publication
Crossref (10)
Crossref
Publication Date
Sat Apr 09 2022
Journal Name
Engineering, Technology &amp; Applied Science Research
Effect of Sustainable Glass Powder on the Properties of Reactive Powder Concrete with Polypropylene Fibers
...Show More Authors

Global warming and environmental damage have become major problems. The production of Portland cement releases large quantities of gas, which cause pollution to the atmosphere. This problem can be solved via the use of sustainable materials, such as glass powder. This study investigates the effect of partial replacement of cement with sustainable glass powder at various percentages (0, 15, 20, and 25%) by weight of cement on some mechanical properties (compressive strength, flexural strength, absorption, and dry density) of Reactive Powder Concrete (RPC) containing a percentage of Polypropylene fibers (PRPC) of 1% by weight. Furthermore, steam curing was performed for 5 hours at 90oC after hardening the sample directly. The RPC was

... Show More
View Publication
Crossref (12)
Crossref
Publication Date
Tue Aug 03 2021
Journal Name
Key Engineering Materials
Study the Behavior of Castellated Steel Column Encasing by Different Reactive Powder Concrete Thickness with Laced Reinforcement
...Show More Authors

Castellated columns are structural members that are created by breaking a rolled column along the center-line by flame after that rejoining the equivalent halves by welding such that for better structural strength against axial loading, the total column depth is increased by around 50 percent. The implementation of these institutional members will also contribute to significant economies of material value. The main objectives of this study are to study the enhancement of the load-carrying capacity of castellated columns with encasement of the columns by Reactive Powder Concrete (RPC) and lacing reinforcement, and serviceability of the confined castellated columns. The Castellated columns with RPC and Lacing Reinforcement improve com

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Jul 27 2023
Journal Name
Buildings
Structural Behavior of Reactive Powder Concrete under Harmonic Loading
...Show More Authors

Industrial buildings usually are designed to sustain several types of load systems, such as dead, live, and dynamic loads (especially the harmonic load produced by rotary motors). In general, these buildings require high-strength structural elements to carry the applied loads. Moreover, Reactive Powder Concrete (RPC) has been used for this purpose because of its excellent mechanical strength and endurance. Therefore, this study provides an experimental analysis of the structural behaviors of reinforced RPC beams under harmonic loads. The experimental program consisted of testing six simply supported RPC beams with lengths of 1500 mm, widths of 150 mm, and thicknesses of 200 mm under harmonic loading with varied frequencies between 1

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Jul 27 2023
Journal Name
Buildings
Structural Behavior of Reactive Powder Concrete under Harmonic Loading
...Show More Authors

Industrial buildings usually are designed to sustain several types of load systems, such as dead, live, and dynamic loads (especially the harmonic load produced by rotary motors). In general, these buildings require high-strength structural elements to carry the applied loads. Moreover, Reactive Powder Concrete (RPC) has been used for this purpose because of its excellent mechanical strength and endurance. Therefore, this study provides an experimental analysis of the structural behaviors of reinforced RPC beams under harmonic loads. The experimental program consisted of testing six simply supported RPC beams with lengths of 1500 mm, widths of 150 mm, and thicknesses of 200 mm under harmonic loading with varied frequencies between 1

... Show More
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref