Environmental sustainability is described as one that avoids the depletion or deterioration of natural resources, while also allowing for the preservation of long-term environmental quality. By practicing environmental sustainability, we may assist to guarantee that the requirements of today’s population are satisfied without risking the capacity of future generations to meet their own needs in the future. Engineers in the field of concrete production are becoming increasingly interested in sustainable development, which includes the utilization of the locally available materials in addition to using the agricultural and industrial waste in construction industry as one of the possible solutions to the environmental and economic issues. This study investigated the effect of partial substitution of cement with recycled glass powder (0, 15, 20, and 25%) by weight of cement at various ages (on compressive strength) after determining the optimal ratio of replacement. This optimal ratio is used to study its effect on some mechanical properties (such as flexural strength, absorption, and dry density) of reactive powder concrete containing 1% micro steel fiber (SRPC), and furthermore, utilizing steam curing for 5 h at 90°C after hardening the sample directly. Reactive powder concrete (RPC) has been designed with the use of the local cement, silica fume, and super plasticizer with a water/cement ratio of 0.20 in order to achieve a compressive strength of 137.09 MPa at the age of 28 days. When recycled glass powder replacement (20%) was utilized, the findings revealed that the compressive strength of RPC improved by 4.2%, the flexural strength increased by 15.3%, the dry density increased by 0.61%, and the absorption was reduced by 32% at 28 days after the test results were compared to the reference mix.
In the case where a shallow foundation does not satisfy with design requirements alone, the addition of a pile may be suitable to improve the performance of the foundation design. The lack of in-situ data and the complexity of the issues caused by lagging in the research area of pile foundations are notable. In this study, different types of piles were used under the same geometric conditions to determine the load-settlement relationships with various sandy soil relative densities. The ultimate pile capacity for each selected pile is obtained from a modified California Bearing Ratio (CBR) machine to be suitable for axial pile loading. Based on the results, the values of Qu for close-ended square pile were increased by 15
... Show MoreConstruction joints are stopping places in the process of placing concrete, and they are required because in many structures it is impractical to place concrete in one continuous operation. The amount of concrete that can be placed at one time is governed by the batching and mixing capacity and by the strength of the formwork. A good construction joint should provide adequate flexural and shear continuity through the interface.
In this study, the effect of location of construction joints on the performance of reinforced concrete structural elements is experimentally investigated.
Nineteen beam specimens with dimensions of 200×200×950 mm were tested. The variables investigated are the location of the construction joints
... Show MoreThe impacts of numerous important factors on the Energy Absorption (EA) of torsional Reinforced Concrete (RC) beams strengthened with external FRP is the main purpose and innovation of the current research. A total of 81 datasets were collected from previous studies, focused on the investigation of EA behaviour. The impact of nine different parameters on the Torsional EA of RC-beams was examined and evaluated, namely the concrete compressive strength (f’c), steel yield strength (fy), FRP thickness (tFRP), width-to-depth of the beam section (b/h), horizontal (ρh) and vertical (ρv) steel ratio, angle of twist (θu), ultimate torque (Tu), and FRP ultimate strength (fy-FRP). For the evaluation of the energy absorption capacity at di
... Show MoreThe distress of moisture induced damage in flexible pavement received tremendous attention over the past decades. The harmful effects of this distress expand the deterioration of other known distresses such as rutting and fatigue cracking. This paper focused on the efficiency of using the waste material of demolished concrete to prepare asphalt mixtures that can withstand the effect of moisture in the pavement. For this purpose, different percentages of waste demolished concrete (0, 10, 20, 30, 50, 70 and 100) were embedded as a replacement for coarse aggregate to construct the base course. The optimum asphalt contents were determined depending on the Marshall method. Then after, two parameters were founded to evaluate the moisture
... Show MoreAs human societies grow, the problem of waste management becomes one of the pressing issues that need to be addressed. Recycling and reuse of waste are effective waste management measures that prevent pollution and conserve natural resources. In this study, the possibility of using glass waste as an alternative was used as a partial weight substitute for fine aggregates with replacement ratios of 10, 20, 30, and 40% by the weight, and formed into test models (15 cm * 15 cm ) cube and (15 cm * 30 cm) cylinder, then matured and tested their strength compression and tensile strength at the age of 7 and 28 days and compared with a reference or conventional concrete with a mixing ratio (1: 1.5: 3) as well as testing its worka
... Show MoreAn experimental investigation based on thirty three simple pullout cylinder specimens was conducted to study the bond-slip trend between concrete and steel reinforcement. Plain and deformed steel reinforcement bars were used in this investigation. The effect of bar diameter, concrete compressive strength and development length on bond-slip relation was detected. The results showed that the bond strength increases with increasing of compressive strength and with decreasing of bar diameter and development length. A nonlinear regression analysis for the experimental results yields in a mathematical correlation to predict the bond strength as a function of concrete compressive strength, reinforcing bar diameter and its yield stress. The minimum
... Show MoreExperimental research was carried out on eight reinforced concrete beams to study the embedded length of the longitudinal reinforcement. Six beams were casted using self compacted concrete, and the two other beams were casted using normal concrete. The test was carried out on beams subjected to two point loads. The strain and the slip of the main reinforcement have been measured by using grooves placed during casting the beams at certain places. The measured strain used to calculate the longitudinal stresses (bond stress) surrounding the bar reinforcement, The study was investigated the using of self compacted concrete SCC on the embedded length of reinforcing bars, and comparing the results with normal concrete. The test results show th
... Show MoreIn the present work, a study is carried out to remove chromium (III) from aqueous solution by: activated charcoal, attapulgite and date palm leaflet powder (pinnae). The effect of various parameters such as contact time, and temperature has been studied. The isotherm equilibrium data were well fitted by Freundlich and Langmuir isotherm models. The adsorption capacity of chromium (III) that was observed by activated charcoal, attapulgite and date palm leaflet powder (pinnae) increased with the rise of temperature when the concentrations of Cr (III) were 600, 700 and 100mg/L respectively. The greatest adsorption capacity ofactivated charcoal, attapulgite and date palm leaflet powder (pinnae) at 10°C was 7.51, 5.39 and 0.77mg.gˉ¹ respective
... Show MoreThe pretreatment process can be considered one of the important processes in wastewater treatment, especially coagulation process to decrease the strength of many pollutants. This paper focused on using powdered date seeds as natural coagulant in addition to chemical coagulants (alum and ferric chloride) to find the optimum dosage of each coagulant that makes efficient removal of turbidity and chemical oxygen demand (COD) from domestic wastewater as a pretreatment process, then finding the optimum combined dosages of date seeds with alum, date seeds with ferric chloride that make efficient removal for both pollutants. Concerning turbidity, the optimum dosage for date seeds, alum and ferric chloride were 40 mg/l (79%), 70
... Show MoreIn this study, Zizphus spina-christi leaf powder was applied for the adsorption of methyl orange. The effect of different operating parameters on the Batch Process adsorption was investigated such as solution pH (2-12), effect of contact time (0-60 min.), initial dye concentration (2-20 mg/L), effect of adsorbent dosage (0-4.5 g) and effect of temperature (20-50ᵒC). The results show a maximum removal rate and adsorption capacity (%R= 23.146, qe = 2.778 mg/g) at pH = 2 and equilibrium was reached at 40 min. The pseudo- second-order kinetics were found to be best fit for the removal process (R2 = 0.997). Different isotherm models (Langmuir, Freundlich, Dubini-Radushkevich,Temkin) were applied in this stud
... Show More