Preferred Language
Articles
/
YRdBCpEBVTCNdQwC5pIj
Numerical Analysis of the Effect of Scanning Speed on the Temperature Field Distribution for Laser Heat Treatment Applications

One of the unique properties of laser heating applications is its powerful ability for precise pouring of energy on the needed regions in heat treatment applications. The rapid rise in temperature at the irradiated region produces a high temperature gradient, which contributes in phase metallurgical changes, inside the volume of the irradiated material. This article presents a comprehensive numerical work for a model based on experimentally laser heated AISI 1110 steel samples. The numerical investigation is based on the finite element method (FEM) taking in consideration the temperature dependent material properties to predict the temperature distribution within the irradiated material volume. The finite element analysis (FEA) was carried out using the APDL scripting language (ANSYS Parametric Design Language) that is provided by the commercial code ANSYS. Infrared (IR) thermography technique was used to explore the workpiece surface and to validate the obtained results. The work takes into account the effect of different speeds of the laser beam and pulses overlap on the temperature pattern of the material surface and depth.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
1-D Simulation of Ultrafast-Pulsed Laser into Nano-Sized Multilayered Structure (Ni81Fe19/Cu/YIG/GGG) for Memory Device Applications

     Spintronic offers a solution by exploiting spin instead of electron charge since spin current propagation can occur in principle without dissipation. One of the applications involve within this project for storage media is heat-assisted magnetic recording (HAMR). The objective of this study is to simulate the behavior of thermal gradient to generate a pure spin current using an ultrafast femtosecond (fs) laser in a nano-sized  multilayered structure of (Al2O3/Ni81Fe19 (Py)/Cu/Y3Fe5O12 (YIG)/Gd3Ga5O12 (GGG)) at room temperature. A ferromagnetic/spacer/magnetic insulator nano-sized multilayered is the proposed structure f

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Dec 05 2021
Journal Name
Iraqi Journal Of Science
The Characterization of Radioactive Waste Drums Using Nondestructive Scanning Gamma Ray System

A non-destructive assay (NDA) for radioactive waste drum has been studied
using a local manufacturing gamma scanning system. The gamma system has been
designed and implemented using scanning system contains a high efficiency
portable HPGe detector for characterization and surveying the radioactive waste
drums at Al-Tuwaitha site- Baghdad. To achieve identification with nonhomogenous
radioactive waste drum, six parallel plastic pipes (2cm in diameter)
were inserted inside the cement type Portland contain radioactive sources and
located at different distances from the outer diameter of the drum. The efficiency
calibration is measured by conventional technique, using five miscellaneous radio
nuclides with drum. Th

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Effect of Laser Shock Peening on the Fatigue Behavior and Mechanical Properties of Composite Materials

In this study, Laser Shock Peening (LSP) effect on the polymeric composite materials has been investigated experimentally. Polymeric composite materials are widely used because they are easy to fabricate and have many attractive features. Unsaturated polyester resin as a matrix was selected and Aluminum powder with micro particles as a reinforcement material was used with different volume fraction (2.5%, 5% and 7.5%). Hand lay-up process was used for preparation the composites. Fatigue test with constant amplitude with stress ratio (R =-1) was carried out before and after LSP process with two levels of energy (1Joule and 2Joule). The result showed an increase in the endurance strength of 25.448% at 7.5% volume fraction when peened is 1J

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
Iraqi Journal Of Physics
Effect of thermal annealing and laser radiation on the optical properties of AgAlS2 thin films

Effect of the thermal annealing at 400oC for 2 hours and Argon laser radiation for half hour on the optical properties of AgAlS2 thin films, prepared on glass slides by chemical spray pyrolysis at 360oC with (0.18±0.05) μm thickness .The optical characteristics of the prepared thin films have been investigated by UV/Vis spectrophotometer in the wavelength range (300 – 1100)nm .The films have a direct allow electronic transition with optical energy (Eg) values decreased from (2.25) eV for untreated thin films to (2.10) eV for the annealed films and to (2.00) eV for the radiated films. The maximum value of the refractive index (n) for all thin films are given about (2.6). Also the extinction coefficient (K) and the real and imaginary d

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 02 2022
Journal Name
Iraqi Journal Of Science
Effect of Solvent type and Annealing Temperature on Efficiency for Eosin -y Dye Sensitized Solar Cells

Dye-sensitized solar cell (DSSC) is one of the photochemical electric cells, which consists of the photoelectrode, the dye, the electrolyte, and the counter electrode. The advantage of DSSC is the low cost of the solar energy conversion into electricity because of inexpensive materials and the relative ease of the fabrication processes. In this study was selected solvent dye resolve to know most efficient in terms of conversion efficiency. A dye solution of water or ethanol and maxing in which eosin – y dissolves behaves like a colloid and explores the effect of sintering temperature of TiO2 films on the efficiency of dye sensitized solar cells. A study conducted on several samples at different temperatures. Exemplary efficiency of the

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Measurement and Analysis of Bubble Size Distribution in the Electrochemical Stirred Tank Reactor

The dimensions of bubbles were measured in a stirrer tank electrochemical reactor, where the analysis of the bubble size distribution has a substantial impact on the flow dynamics. The high-speed camera and image processing methods were used to obtain a reliable photo. The influence of varied air flow rates (0.3; 0.5; 1 l/min) on BSD was thoroughly investigated. Two types of distributors (cubic and circular) were examined, and the impact of various airflow rates on BSD was investigated in detail. The results showed that the bubbles for the two distributors were between 0.5 and 4.5 mm. For both distributors at each airflow, the Sauter mean diameter for the bubbles was calculated. According to the results, as the flow rate raised, the bubb

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Causality Analysis of the Nexus between Higher Education and Income Distribution in Iraq

Abstract:

The achievement of economic and social welfare for individual is the main target to all policies that adopted by all countries worldwide either were economic, social, political or others. The obtaining of education by individuals and especially the higher education is one of the most important determinates in achieving the wellbeing and lasted economic development. This is because via the higher education new fields can be opened in front of individuals in order to get adequate jobs associated with their scientific specialization. This is allowing educated individuals gain higher income that can reduce the gap of income inequality.

Thus, this paper aims to analysis the n

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Jan 13 2020
Journal Name
Day 3 Wed, January 15, 2020
Numerical Simulation of Gas Lift Optimization Using Genetic Algorithm for a Middle East Oil Field: Feasibility Study
<p>Gas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t</p> ... Show More
Scopus (13)
Crossref (7)
Scopus Crossref
View Publication
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Engineering
Petrophysical Analysis of an Iraqi Gas Field (Mansuriya Gas Field)

Mansuriya Gas field is an elongated anticlinal structure aligned from NW to SE, about 25 km long and 5-6 km wide. Jeribe formation is considered the main reservoir where it contains condensate fluid and has a uniform thickness of about 60 m. The reservoir is significantly over-pressured, (TPOC, 2014).

This research is about well logs analysis, which involves the determination of Archie petrophysical parameters, water saturation, porosity, permeability and lithology. The interpretations and cross plots are done using Interactive Petrophysics (IP) V3.5 software.

The rock parameters (a, m and n) values are important in determining the water saturation where (m) can be calcul

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Iraqi Journal Of Physics
Effect of Laser Energy and Repetition Rate on Holmium Plasma Emission

The holmium plasma induced by a 1064-nmQ-switched Nd:YAG laser in air was investigated. This work was done theoretically and experimentally.  Cowan code was used to get the emission spectra for different transition of the holmium target. In the experimental work, the evolution of the plasma was studied by acquiring spectral images at different laser pulse energies (600,650,700, 750, and 800 mJ). The repetition rates of (1Hz and 10Hz) in the UV region (200-400 nm). The results indicate that, the emission line intensities increase with increasing of the laser pulse energy and repetition rate. The strongest emission spectra appeared when the laser pulse energy is 800mJ and 10 Hz repetition rate at λ= 345.64nm, with the maximum intensi

... Show More
Crossref
View Publication Preview PDF