High vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination by considering the traffic segment status when choosing the next intersection. RTISAR presents a new formula for assessing segment status based on connectivity, density, load segment, and cumulative distance toward the destination. A verity period mechanism is proposed to denote the projected period when a network failure is likely to occur in a particular segment. This mechanism can be calculated for each collector packet to minimize the frequency of RTISAR execution and to control the generation of collector packets. As a result, this mechanism minimizes the communication overhead generated during the segment status computation process. Simulations are performed to evaluate RTISAR, and the results are compared with those of intersection-based connectivity aware routing and traffic flow oriented routing. The evaluation results provided evidence that RTISAR outperforms in terms of packet delivery ratio, packet delivery delay, and communication overhead.
<p>In this paper, a simple color image compression system has been proposed using image signal decomposition. Where, the RGB image color band is converted to the less correlated YUV color model and the pixel value (magnitude) in each band is decomposed into 2-values; most and least significant. According to the importance of the most significant value (MSV) that influenced by any simply modification happened, an adaptive lossless image compression system is proposed using bit plane (BP) slicing, delta pulse code modulation (Delta PCM), adaptive quadtree (QT) partitioning followed by an adaptive shift encoder. On the other hand, a lossy compression system is introduced to handle the least significant value (LSV), it is based on
... Show MoreThe use of online social network (OSN) has become essential to humans' lives whether for entertainment, business or shopping. This increasing use of OSN motivates designing and implementing special systems that use OSN users' data to provide better user experience using machine learning and data mining algorithms and techniques. One system that is used extensively for this purpose is friend recommendation system (FRS) in which it recommends users to other users in professional or entertaining online social networks.
For this purpose, this study proposes a novel friend recommendation system, namely Hybrid Friend Recommendation (FR) model. The Hybrid model applies dual-stage methodology on unlabeled data of 1241 users collected fro
... Show MoreOrthogonal polynomials and their moments serve as pivotal elements across various fields. Discrete Krawtchouk polynomials (DKraPs) are considered a versatile family of orthogonal polynomials and are widely used in different fields such as probability theory, signal processing, digital communications, and image processing. Various recurrence algorithms have been proposed so far to address the challenge of numerical instability for large values of orders and signal sizes. The computation of DKraP coefficients was typically computed using sequential algorithms, which are computationally extensive for large order values and polynomial sizes. To this end, this paper introduces a computationally efficient solution that utilizes the parall
... Show MoreIn this work, a pollution-sensitive Photonic Crystal Fiber (PCF) based on Surface Plasmon Resonance (SPR) technology is designed and implemented for sensing refractive indices and concentrations of polluted water . The overall construction of the sensor is achieved by splicing short lengths of PCF (ESM-12) solid core on one side with traditional multimode fiber (MMF) and depositing a gold nanofilm of 50nm thickness on the end of the PCF sensor. The PCF- SPR experiment was carried out with various samples of polluted water including(distilled water, draining water, dirty pond water, chemical water, salty water and oiled water). The location of the resonant wavelength peaks is seen to move to longer wavelengths (red shift)
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreIn these recent years, the world has witnessed a kind of social exclusion and the inability to communicate directly due to the Corona Virus Covid 19 (COVID-19) pandemic, and the consequent difficulty of communicating with patients with hospitals led to the need to use modern technology to solve and facilitate the problem of people communicating with each other. healthcare has made many remarkable developments through the Internet of things (IOT) and cloud computing to monitor real-time patients' data, which has enabled many patients' lives to be saved. this paper presents the design and implementation of a Private Backend Server Software based on an IoT health monitoring system concerned emergency medical services utilizing biosenso
... Show MoreFacial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) f
... Show MoreAny software application can be divided into four distinct interconnected domains namely, problem domain, usage domain, development domain and system domain. A methodology for assistive technology software development is presented here that seeks to provide a framework for requirements elicitation studies together with their subsequent mapping implementing use-case driven object-oriented analysis for component based software architectures. Early feedback on user interface components effectiveness is adopted through process usability evaluation. A model is suggested that consists of the three environments; problem, conceptual, and representational environments or worlds. This model aims to emphasize on the relationship between the objects
... Show MoreThe printed Arabic character recognition are faced numerous challenges due to its character body which are changed depending on its position in any sentence (at beginning or in the middle or in the end of the word). This paper portrays recognition strategies. These strategies depend on new pre-processing processes, extraction the structural and numerical features to build databases for printed alphabetical Arabic characters. The database information that obtained from features extracted was applied in recognition stage. Minimum Distance Classifier technique (MDC) was used to classify and train the classes of characters. The procedure of one character against all characters (OAA) was used in determination the rate
... Show MoreEarthquakes occur on faults and create new faults. They also occur on normal, reverse and strike-slip faults. The aim of this work is to suggest a new unified classification of Shallow depth earthquakes based on the faulting styles, and to characterize each class. The characterization criteria include the maximum magnitude, focal depth, b-constant value, return period and relations between magnitude, focal depth and dip of fault plane. Global Centroid Moment Tensor (GCMT) catalog is the source of the used data. This catalog covers the period from Jan.1976 to Dec. 2017. We selected only the shallow (depth less than 70kms) pure, normal, strike-slip and reverse earthquakes (magnitude ≥ 5) and excluded the oblique earthquakes. Th
... Show More