The reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal for VO (II), square planar geometry for Cu (II) and tetrahedral for Zn (II), Cd (II) and Hg (II), - for Ni (II), Cr (III) complexes were calculated, the ratio of (L-AZD) to metal ions was (3:1) confirmed by metal ratio and atomic absorption spectrophotometer, magnetic moment values at (298 K) of VO (II), Cr (III), Mn (II), Co (II), Ni (II) and Cu (II) are lower than the total spin-only indicate a dominate of anti-ferromagnetic coupling between them.
Bacterial infections pose an ongoing challenge due to resistance developed by infectious bacteria. So much research targeting designing new antibacterials is published annually. Our goal is to synthesize compounds that have given antibacterial activity according to molecular docking against the chosen target protein and that have acceptable ADMET properties that can be synthesized and used in the future. New 2-(5-methoxy-1-(4-chlorobenzene)-2-methyl-1H-indol-3-yl)acetohydrazide derivatives’ antibacterial efficacy against two common strains of Gram-negative and Gram-positive microorganisms has been developed, produced, and investigated. Sophisticated, modern analytical methods, including ATR-FTIR and 1H NMR spectroscopy, were used
... Show MoreThe family Ormyridae has been very much neglected by workers and only two species has been recorded so far from Iraq. The present study, based mainly on my collection, deals with five species, of which one is new to science. The new species is described together with notes on locality data, host records, distribution and taxonomical remarks for all the species.
Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise closure topological spaces, fibrewise wake topological spaces, fibrewise strong topological spaces over B. Also, we introduce the concepts of fibrewise w-closed (resp., w-coclosed, w-biclosed) and w-open (resp., w-coopen, w-biopen) topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
Czerwi’nski et al. introduced Lucky labeling in 2009 and Akbari et al and A.Nellai Murugan et al studied it further. Czerwi’nski defined Lucky Number of graph as follows: A labeling of vertices of a graph G is called a Lucky labeling if for every pair of adjacent vertices u and v in G where . A graph G may admit any number of lucky labelings. The least integer k for which a graph G has a lucky labeling from the set 1, 2, k is the lucky number of G denoted by η(G). This paper aims to determine the lucky number of Complete graph Kn, Complete bipartite graph Km,n and Complete tripartite graph Kl,m,n. It has also been studied how the lucky number changes whi
... Show More