Tigris River is the lifeline that supplies a great part of Iraq with water from north to south. Throughout its entire length, the river is battered by various types of pollutants such as wastewater effluents from municipal, industrial, agricultural activities, and others. Hence, the water quality assessment of the Tigris River is crucial in ensuring that appropriate and adequate measures are taken to save the river from as much pollution as possible. In this study, six water treatment plants (WTPs) situated on the two-banks of the Tigris within Baghdad City were Al Karkh; Sharq Dijla; Al Wathba; Al Karama; Al Doura, and Al Wahda from northern Baghdad to its south, that selected to determine the removal efficiency of turbidity and the water quality index used to assess the quality of water for drinking purposes, in addition to finding the model based on past information to predict the quality of treated wastewater produced in each WTP using an artificial neural network (ANN) approach. The selected parameters for this study were turbidity, total hardness, total solids, suspended solids, and alkalinity. The results showed that all the WTPs possessed a high rate of efficiency in the removal of turbidity from raw water. Also, the results of the water quality index for all WTPs were classified over a study period of three years from 2015 to 2017 as being a good water quality and based on these results, the water treatment plants can be considered to be doing efficient water treatment process. The ANN model has been found at all WTPs to have a coefficient of determination (R2) for expected models was more than 0.7 to provide a WQI prediction tool that can be used with a moderate level of predictive acceptance to describe the suitability of WTP water quality for drinking purposes.
This study investigated a novel application of forward osmosis (FO) for oilfield produced water treatment from the East Baghdad oilfield affiliated to the Midland Oil Company (Iraq). FO is a part of a zero liquid discharge system that consists of oil skimming, coagulation/flocculation, forward osmosis, and crystallization. Treatment of oilfield produced water requires systems that use a sustainable driving force to treat high-ionic-strength wastewater and have the ability to separate a wide range of contaminants. The laboratory-scale system was used to evaluate the performance of a cellulose triacetate hollow fiber CTA-HF membrane for the FO process. In this work, sodium chloride solution was used as a feed solution (FS) with a concentratio
... Show MoreField experiment was conducted by using two fertilization systems (i.e.) biofertilizers (inoculation with Pseudomonas putida and with Azotobacter chroococcum and non - inoculation) and chemical fertilization (100%, 50% and 25% of recommended by Ministry of Agriculture) to study the influence of these system and interaction on water and grain yield productivity, some growth phytohorones and number of bacterial cells in soil rizosphere of root of wheat crop under water scarcity. The result showed that the integrate fertilization (inoculation with Pseudomonas putida and Azotobacter chroococcum bacterial + 50% of the recommended chemical fertilizer) recorded 5.70 and 5.55 t ha-1, respectively with reducing the chemical fertilizer app
... Show MorePositive and negative parity states for 114Te have been studied applying the vibration al limit U(5) of Interacting boson model (IBM- 1 ) . The present results have shown their good agreement with experimental data in addition to the determination of the spin/parity of new energy levels are not assigned experimentally as the levels 0+2 and 5+1 and the levels 3"1 and 5-1 . Then back propagation multiLayer neural network used for positive and negative parity states for 114Te and shown their membership to the Vibration limit U(5) the network implemented by MATLAB system.
The method of solving volterra integral equation by using numerical solution is a simple operation but to require many memory space to compute and save the operation. The importance of this equation appeares new direction to solve the equation by using new methods to avoid obstacles. One of these methods employ neural network for obtaining the solution.
This paper presents a proposed method by using cascade-forward neural network to simulate volterra integral equations solutions. This method depends on training cascade-forward neural network by inputs which represent the mean of volterra integral equations solutions, the target of cascade-forward neural network is to get the desired output of this network. Cascade-forward neural
... Show MoreThe present study develops an artificial neural network (ANN) to model an analysis and a simulation of the correlation between the average corrosion rate carbon steel and the effective parameter Reynolds number (Re), water concentration (Wc) % temperature (T o) with constant of PH 7 . The water, produced fom oil in Kirkuk oil field in Iraq from well no. k184-Depth2200ft., has been used as a corrosive media and specimen area (400 mm2) for the materials that were used as low carbon steel pipe. The pipes are supplied by Doura Refinery . The used flow system is all made of Q.V.F glass, and the circulation of the two –phase (liquid – liquid ) is affected using a Q.V.F pump .The input parameters of the model consists of Reynolds number , w
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
The current study aims to find a new plan to manage the water quality of the western part of the Hammar Marsh to reduce the salts that cause problems for the marshes and preserve their environmental life by isolating the southwestern part of the Hammar Marsh by closing the outlet under the railway embankment. The outlet is discharging saline water to the east-western part of Al Hammar Marsh. After isolating the southwestern part of the marsh, a new outlet is proposed. The impact of the flow hydrodynamics on improving the water quality was simulated using the SMS model. The hydrodynamics and water quality simulation models for the marsh are : a hydrodynamic model and average depth (SMS RMA2) and a two-dimensional water quality model (SMS
... Show MoreInformation about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites
... Show MoreThis study was conducted to explore the effects of using ionized water on the productive and physiological performance of Japanese quails (Coturnix japonica). Our study was conducted at a private farm from 20th April, 2016 to 13th July, 2016 (84 d). One hundred 42-day-old Japanese quail chicks were used, divided randomly into 5 groups with 4 replicates. Treatments consisted in a control group (T1 - normal water:), alkaline (T2 - pH 8 and T3 - pH 9), and acidic water (T4 - pH 6 and T5 - pH 5). All birds were fed a balanced diet of energy and protein. The egg production ratio, egg weight, cumulative number of eggs, egg mass, feed conversion ratio, productivity per hen per week, and effects on plasma lipids, uric acid, glucose, calcium, and ph
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show More