The current study aims to find a new plan to manage the water quality of the western part of the Hammar Marsh to reduce the salts that cause problems for the marshes and preserve their environmental life by isolating the southwestern part of the Hammar Marsh by closing the outlet under the railway embankment. The outlet is discharging saline water to the east-western part of Al Hammar Marsh. After isolating the southwestern part of the marsh, a new outlet is proposed. The impact of the flow hydrodynamics on improving the water quality was simulated using the SMS model. The hydrodynamics and water quality simulation models for the marsh are : a hydrodynamic model and average depth (SMS RMA2) and a two-dimensional water quality model (SMS RM4). The Civil3D was used to determine the area elevation curve for the marsh, while the shape file for the study area was prepared using the Arc-GIS model. The first model is used to simulate the flow conditions in the marsh (water depth and velocity vectors), while the second model is used to simulate the salinity of the
water (Total Dissolved Solids (TDS)). For calibration and verification the models, water samples were taken from ten selected locations within the marsh. The measurements were conducted on 1st January and on 2nd February 2022. The simulation results were validated with the field measurement, and the discrepancy between the simulated and measured water depth was found to be 11%. Many scenarios are based on the proposed recommended outlet that considerably reduces TDS concentration in the Al Hammar marsh. Three scenarios were run on the proposed outlet to maintain a submerged area of 88 km2, and to compare the three scenarios, ten points were selected in different locations, where the average TDS ratio for the first scenario was 7528 mg/l, the second scenario was 6982 mg/l and for the third scenario was 8069 mg/l. Results showed that the proposed outlet would improve the hydrodynamics of the flow and reduce the TDS concentration by 10% in addition to controlling the contamination of east western part of the marsh
Al-Chibayish Marsh (CM) is considered as the major part of Central Marshes area of this marsh is 1050 Km². The water quality of these marshes is suffering from salt accumulation due to intensive dam construction, limited supply of water from sources, climate change impacts, and the absence of outlet flow from these marshes, specifically at low flow periods. So, the current research aims to assess and improve these marshes' hydraulic behavior and water quality and define the best location for outlet drains. Field measurements and laboratory tests were conducted for two periods (November 2020 and February 2021) to define the (TDS) concentrations at nine different locations. Samples were also examined for water's phy
... Show MoreThe object of the presented study was to monitor the changes that had happened in the main features (water, vegetation, and soil) of Al-Hammar Marsh region. To fulfill this goal, different satellite images had been used in different times, MSS 1973, TM 1990, ETM+ 2000, 2002, and MODIS 2009, 2010. A new technique of the unsupervised classification called (Color Extracting Technique) was used to classify the satellite images. MATLAP programming used the technique and separated Al-Hammar Marsh from other water features (rivers, irrigated lands, etc.) when calculated the changes in the water content of the study region. ArcGIS 9.3 (arcMAP, arcToolbox) were used to achieve this work and calculate area of each class.
Al-Huweizah Marsh is considered as the largest in Iraq. This research aims to maintain thesustainability of Al-Huweizah Marsh under all circumstances and within the limits of the
available natural resources from the Iraqi side and the absence of feeding from the Iranian sidedue to the recent Iranian separation dike along the international boundaries within the marsh.
Twelve scenarios have been suggested as a first step to restore the whole marsh. But the
uncontrolled Iranian feeders and exiguity of their discharges recently, it was necessary to studyonly the northern part of the marsh as an alternative case to ensure reasonable amounts of waterfor the purpose of maintaining and restore the marsh. Hydrological routing model was
Parasitological investigation of piscivorous birds in Al-Hammar marsh south of Iraq during December-February 2004 and December 2005 were revealed that water birds infected with five nematode species, which belong to three different superfamilies, Desmidocercella numidica (Seurat, 1920) (Superfamily: Aproctoidea) from three piscivorous birds including Grey heron Ardea cinerea, Bittern Botaurusstellaris, and small white heron Ardeola ralloides; Avioserpens sp. 1 and Avioserpens sp. 2 (Superfamily: Dracunculoidea) from small bittern Ixobrychus minutus and black glossy ibis Plegadisfalcinellus respectively; Baruscapillaria sp. and Baruscapillarinae gen. sp. (Sup
... Show MoreAl Huweizah Marsh is considered as the largest marsh at the southern part of Iraq. About one third of the marsh is located within the Iranian territory. Iran began to construct earth dikes along the Iraqi-Iranian international borders to separate the Iranian part of the marsh. The electrical conductivity, EC, value was adopted to be the indicator for the water salinity within the marsh. A steady two-dimensional water quality routing model was implemented by using the RMA2 and RMA4 softwares within the SMS computer package to estimate the distribution of the
EC values within the marsh seasonally during the wet, moderate and dry water years. The EC distribution Patterns were estimated considering the expected two cases of the marsh futu
Concentrations and distribution of major, minor, and trace elements were
studied in thirteen sediment samples from Al-Hammar Marsh.
Multivariate statistical techniques such as Principal Component Analysis (PCA)
and Agglomerative Hierarchal Cluster Analysis (AHCA) as well as pollution
analysis such as Enrichment Factor (EF) were used to process the data and identify
the possible sources of elemental constituents in sediment samples.Results of
chemical analysis revealed that Major element mean concentrations were in the
order of Ca> Si> K> Mg> and minor elements were in the order of Al> Fe>S>Cl>
Ti> P>Mn> Sr> N and trace elements were in the order of Cr> Ni> Zr>V>Zn>
Devastated by the combined impact of massive drainage works and upstream damming since the 1980's, Al-Hammar Marsh, Southern Iraq, has completely collapsed with 94 % of its land cover transformed into bare land and salt crusts by 2000. After a policy initiated to restore the Iraqi marshes again in 2003, the marsh recovered about half of its former area. As a part of the ecological recovery assessment of this newly inundated marsh, it is important to investigate the extend impact of desiccation after 3 years of inundation on water quality as the latter plays an important role in the restoration process of the marshes. Therefore, from a restoration point of view, major and trace element distribution and sourcing as well as seasonal variati
... Show MoreWater quality of Al-Gharraf River, which considered the main branch of Tigris River south of Iraq was examined using the Canadian Council of Ministers of the Environment Water Quality Index (CCME-WQI) for aquatic life protection and irrigation. Water samples were collected monthly from five sampling stations during 2013-2014 and 17 physicochemical parameters were analyzed: Temperature, hydrogen ion concentration (pH), electrical conductivity, dissolved oxygen, turbidity, alkalinity, chloride, calcium, magnesium, sulfate, phosphate, nitrate, sodium, lead, cadmium, nickel and zinc.
The model classified water of Al-Gharraf River as poor for aquatic life protection and fair for irrigation with seasonal overall WQI value of 30-39 and among
The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The develope
... Show More