Preferred Language
Articles
/
YBg-fpQBVTCNdQwCeBvC
Improving Performance Classification in Wireless Body Area Sensor Networks Based on Machine Learning Techniques
...Show More Authors

Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two supervised machine learning classification techniques, Learning Vector Quantization (LVQ) and Support Vector Machine (SVM) classifiers, to achieve better search performance and high classification accuracy in a heterogeneous WBASN. These classification techniques are responsible for categorizing each incoming packet into normal, critical, or very critical, depending on the patient's condition, so that any problem affecting him can be addressed promptly. Comparative analyses reveal that LVQ outperforms SVM in terms of accuracy at 91.45% and 80%, respectively.

Scopus Crossref
View Publication
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Chemical sensor based on a solid-core photonic crystal fiber interferometer
...Show More Authors

Photonic crystal fiber interferometers are used in many sensing applications. In this work, an in-reflection photonic crystal fiber (PCF) based on Mach-Zehnder (micro-holes collapsing) (MZ) interferometer, which exhibits high sensitivity to different volatile organic compounds (VOCs), without the needing of any permeable material. The interferometer is robust, compact, and consists of a stub photonic crystal fiber of large-mode area, photonic crystal fiber spliced to standard single mode fiber (SMF) (corning-28), this splicing occurs with optimized splice loss 0.19 dB In the splice regions the voids of the holey fiber are completely collapsed, which allows the excitation and recombination of core and cladding modes. The device reflection

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 24 2017
Journal Name
Iraqi Journal Of Laser
All Fiber Chemical Liquids Refractive Index Sensor Based on Multimode Interference
...Show More Authors

A simple all optical fiber sensor based on multimode interference (MMI) for chemical liquids sensing was designed and fabricated. A segment of coreless fiber (CF) was spliced between two single mode fibers to buildup single mode-coreless-single mode (SCS) structure. Broadband source and optical signal analyzer were connected to the ends of SCS structure. De-ionized water, acetone, and n-hexane were used to test the performance of the sensor. Two influence factors on the sensitivity namely the length and the diameter of the CF were investigated. The obtained maximum sensitivity was at n-hexane at 340.89 nm/RIU (at a wavelength resolution of the optical spectrum analyzer of 0.02 nm) when the diameter of the CF reduced from 125 μm to 60 μ

... Show More
View Publication Preview PDF
Publication Date
Wed Oct 10 2018
Journal Name
Commun.fac.sci.univ.ank.series A2-a3
ULTRAHIGH SENSITIVE REFRACTIVE INDEX SENSOR BASED ON TAPERED MULTICORE OPTICAL FIBER
...Show More Authors

The refractive index sensors based on tapered optical fiber are attractive for many industries due to sensing capability in a variety of application. In this paper, we proposed a refractive index sensor based on multicore fiber (MCF) sandwiched between two standard single mode fibers (SMF). The sensor consisting of three sections, SMF- MCF-SMF is structurally simple and can be easily produced by joining these parts. The MFC contains seven cores and these cores are surrounded by a single cladding. The sensing region is obtained by tapering the MCF section where the evanescent field is generated. The single mode propagating along the SMF is stimulated at the first joint and is coupled to the cladding modes. These modes interfere with the core

... Show More
Publication Date
Tue Jan 01 2013
Journal Name
Thesis
User Authentication Based on Keystroke Dynamics Using Artificial Neural Networks
...Show More Authors

Computer systems and networks are being used in almost every aspect of our daily life, the security threats to computers and networks have increased significantly. Usually, password-based user authentication is used to authenticate the legitimate user. However, this method has many gaps such as password sharing, brute force attack, dictionary attack and guessing. Keystroke dynamics is one of the famous and inexpensive behavioral biometric technologies, which authenticate a user based on the analysis of his/her typing rhythm. In this way, intrusion becomes more difficult because the password as well as the typing speed must match with the correct keystroke patterns. This thesis considers static keystroke dynamics as a transparent layer of t

... Show More
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Sentiment analysis in arabic language using machine learning: Iraqi dialect case study
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Oct 19 2018
Journal Name
Journal Of Economics And Administrative Sciences
THE IMPACT OF TRAINING BASED UPON MERITS IN IMPROVING THE EMPLOYEES PERFORMANCE AT THE JORDANIAN UNIVERSITY HOSPITALS Abstract
...Show More Authors

The study aims to identify the impact of competency-based training in its dimensions (skills, cognitive abilities, attitudes, and attitudes) in improving the performance of employees (achievement, strategic thinking and problem solving) in Jordanian university hospitals.

The study based on analytical descriptive method. The study population consisted of the Jordanian University Hospitals, the University Hospital of Jordan and the King Abdullah Hospital, as applied study case. The sample of the study consists of all upper and middle administrative employees of these hospitals; questionnaire distributed all of them and the number of valid questionnaires for analysis were 182 questionnaire.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Aug 09 2025
Journal Name
Scientific Reports
Machine learning models for predicting morphological traits and optimizing genotype and planting date in roselle (Hibiscus Sabdariffa L.)
...Show More Authors

Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genoty

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Thu Sep 04 2025
Journal Name
Iraqi Journal For Computer Science And Mathematics
Hotspot Issue Handling and Reliable Data Forwarding Technique for Ocean Underwater Sensor Networks
...Show More Authors

Underwater Wireless Sensor Networks (UWSNs) have emerged as a promising technology for a wide range of ocean monitoring applications. The UWSNs suffer from unique challenges of the underwater environment, such as dynamic and sparse network topology, which can easily lead to a partitioned network. This results in hotspot formation and the absence of the routing path from the source to the destination. Therefore, to optimize the network lifetime and limit the possibility of hotspot formation along the data transmission path, the need to plan a traffic-aware protocol is raised. In this research, we propose a traffic-aware routing protocol called PG-RES, which is predicated on the ideas of Pressure Gradient and RESistance concept. The proposed

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Sep 01 2012
Journal Name
2012 8th International Conference On Wireless Communications, Networking And Mobile Computing
Performance Evaluation of Location Management in GSM Networks
...Show More Authors

View Publication
Crossref (1)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Advance Science And Technology
MR Images Classification of Alzheimer's Disease Based on Deep Belief Network Method
...Show More Authors

Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the

... Show More