The rehabilitation of deteriorated pavements using Asphalt Concrete (AC) overlays consistently confronts the reflection cracking challenge, where inherent cracks and joints from an existing pavement layer are mirrored in the new overlay. To address this issue, the current study evaluates the effectiveness of Engineered Cementitious Composite (ECC) and geotextile fabric as mitigation strategies. ECC, characterized by its tensile ductility, fracture resistance, and high deformation capacity, was examined in interlayer thicknesses of 7, 12, and 17 mm. Additionally, the impact of geotextile fabric positioning at the base and at 1/3 depth of the AC specimen was explored. Utilizing the Overlay Testing Machine (OTM) for evaluations, the research demonstrated that ECC17 significantly mitigated reflection cracking, showing a notable 764% increase in the number of load cycles to failure (Nf) compared to the Geotextile Base (GB) specimen. Against the Reference Specimen (RS), ECC17 exhibited a remarkable 1307% enhancement in Nf values, underscoring its effectiveness. Geotextile fabric, particularly at 1/3 depth, demonstrated notable resistance but was overshadowed by the performance of ECC interlayers. The results clearly indicate that ECC, especially ECC17, stands out as an effective solution for mitigating reflection cracking, including joints, in AC overlays.
Aspartate aminotransferase was purified from urine and serum of patients with type 2 diabetes in a 2 steps procedure involving dialysis bag and sephadex G-25 gel filtration (column chromatography). The enzyme was purified 346.23 fold with 1467% yield and 3.46 fold with 142.85% yield in urine and serum of patients with type 2 diabetes respectively. The purified enzyme showed single peak. The results of this study revealed that AST activity of type 2 diabetes urine and serum increased significantly (p<0.001) compared with control group.
In this work, an inventive photovoltaic evaporative cooling (PV/EC) hybrid system was constructed and experimentally investigated. The PV/EC hybrid system has the prosperous advantage of producing electrical energy and cooling the PV panel besides providing cooled-humid air. Two cooling techniques were utilized: backside evaporative cooling (case #1) and combined backside evaporative cooling with a front-side water spray technique (case #2). The water spraying on the front side of the PV panel is intermittent to minimize water and power consumption depending on the PV panel temperature. In addition, two pad thicknesses of 5 cm and 10 cm were investigated at three different water flow rates of 1, 2, and 3 lpm. In Case #1,
... Show MoreBackground: Periodontal diseases (PD) are inflammatory conditions of the tissues supporting the teeth, most often gingivitis and periodontitis. Maxillary chronic rhinosinusitis (MCRS) is the inflammation of the maxillary sinuses which is last for at least 12 consecutive weeks duration. Aims of study: Distribution of periodontal diseases among patients with Maxillary chronic rhinosinusitis according to gender and age. Materials and methods: Males and females subjects (25-45 years), divided into two groups; 150 patients suffer from MCRS and 130 subjects without MCRS. Clinical periodontal parameters; Plaque Index (PL.I), Gingival Index (G.I), Probing Pocket Depth (PPD), Clinical Attachment Level (CAL) and Bleeding On Probing (BOP) recorded f
... Show MoreEvolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust E
... Show MoreAn effort is made to study the effect of composite nanocoating using aluminum-9%wt silicon alloys reinforced with different percentage (0.5,1,2,4)wt.% of carbon nanotubes (CNTs) using plasma spraying. The effect of this composite on corrosion behavior for AA6061-T6 by extrapolation Tafel test in sea water 3.5wt% NaCl was invested. Many specimens where prepared from AA6061-T6 by the dimension (15x15x3)mm as this first set up and other steps include coating process, X-ray diffraction and SEM examination .The results show the CNTs increase the corrosion rate of the nanocomposite coatings with increasing the weight percentage of CNTs within the Al-Si matrix. Al-9wt%Si coating layer itself has less corrosion rate if compared with both n
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More