Preferred Language
Articles
/
XhfW0IwBVTCNdQwC_Qhr
Comparison study of classification methods of intramuscular electromyography data for non-human primate model of traumatic spinal cord injury
...Show More Authors

Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental stages (pre-and post-lesion) using electromyography signals. Eight time-domain features were extracted from the collected electromyography data. To overcome the imbalanced dataset issue, synthetic minority oversampling technique was applied. Different ML classification techniques were applied including multilayer perceptron, support vector machine, K-nearest neighbors, and radial basis function network; then their performances were compared. A confusion matrix and five other statistical metrics (sensitivity, specificity, precision, accuracy, and F-measure) were used to evaluate the performance of the generated classifiers. The results showed that the best classifier for the left- and right-side data is the multilayer perceptron with a total F-measure of 79.5% and 86.0% for the left and right sides, respectively. This work will help to build a reliable classifier that can differentiate between these two phases by utilizing some extracted time-domain electromyography features.

Scopus Clarivate Crossref
View Publication
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Engineering
Data Base for Dynamic Soil Properties of Seismic Active Zones in Iraq
...Show More Authors

Iraq is located near the northern tip of the Arabian plate, which is advancing northwards relative to the Eurasian plate, and is predictably, a tectonically active country. Seismic activity in Iraq increased significantly during the last decade. So structural and geotechnical engineers have been giving increasing attention to the design of buildings for earthquake resistance. Dynamic properties play a vital role in the design of structures subjected to seismic load. The main objective of this study is to prepare a data base for the dynamic properties of different soils in seismic active zones in Iraq using the results of cross hole and down hole tests. From the data base collected it has been observed that the average ve

... Show More
View Publication Preview PDF
Publication Date
Mon May 22 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Evaluation of The Nuclear Data on(α,n)Reaction for Natural Molybdenum
...Show More Authors

The cross section evaluation for (α,n) reaction was calculated according to the available International Atomic Energy Agency (IAEA) and other experimental published data . These cross section are the most recent data , while the well known international libraries like ENDF , JENDL , JEFF , etc.   We considered an energy range from threshold to 25 MeV in interval (1 MeV).   The average weighted cross sections for all available experimental and theoretical(JENDL) data and for all the considered isotopes was calculated . The cross section of the element is then calculated according to the cross sections of the isotopes of that element taking into account their abundance . A mathematical representative equation for eac

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimate Complete the Survival Function for Real Data of Lung Cancer Patients
...Show More Authors

 In this paper, we estimate the survival function for the patients of lung cancer using different nonparametric estimation methods depending on sample from complete real data which describe the duration of survivor for patients who suffer from the lung cancer based on diagnosis of disease or the enter of patients in a hospital for period of two years (starting with 2012 to the end of 2013). Comparisons between the mentioned estimation methods has been performed using statistical indicator mean squares error, concluding that the survival function for the lung cancer by using shrinkage method is the best

View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Proposition of New Ensemble Data-Intelligence Models for Surface Water Quality Prediction
...Show More Authors

View Publication
Scopus (77)
Crossref (75)
Scopus Clarivate Crossref
Publication Date
Wed Jun 30 2021
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Advanced Study of Promoted Pt /SAPO-11 Catalyst for Hydroisomerization of the n-Decane Model and Lube Oil
...Show More Authors

   SAPO-11 is synthesized from silicoaluminophosphate in the presence of di-n-propylamine as a template. The results show that the sample obtained has good crystallinity, 396m2/g BET surface area, and 0.35 cm3/g pore volume. The hydroisomerization activity of (0.25)Pt (1)Zr (0.5)W/SAPO-11 catalyst was determined using n-decane and base oil. All hydroisomerization experiments of n-decane were achieved at a fixed bed plug flow reactor at a temperature range of 200-275°C and  LHSV 0.5-2h-1.  The results show that the n-decane conversion increases with increasing temperature and decreasing LHSV, the maximum conversion of 66.7 % was achieved at temperature 275°C and LHSV of 0.5 h-1

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jun 30 2021
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Advanced Study of Promoted Pt /SAPO-11 Catalyst for Hydroisomerization of the n-Decane Model and Lube Oil
...Show More Authors

SAPO-11 is synthesized from silicoaluminophosphate in the presence of di-n-propylamine as a template. The results show that the sample obtained has good crystallinity, 396m2/g BET surface area, and 0.35 cm3/g pore volume. The hydroisomerization activity of (0.25)Pt (1)Zr (0.5)W/SAPO-11 catalyst was determined using n-decane and base oil. All hydroisomerization experiments of n-decane were achieved at a fixed bed plug flow reactor at a temperature range of 200-275°C and  LHSV 0.5-2h-1.  The results show that the n-decane conversion increases with increasing temperature and decreasing LHSV, the maximum conversion of 66.7 % was achieved at temperature 275°C and LHSV of 0.5 h-1. Meanwhile, the same catalyst was used to improve base oil spec

... Show More
Crossref (1)
Crossref
Publication Date
Sun May 11 2025
Journal Name
Al–bahith Al–a'alami
Convincing methods in designing infographic content analytical study
...Show More Authors

The research aims to reveal the recent trends used in providing information and to know the persuasive methods used in designing the content of the infographic as well as the nature of persuasive design methods and the topics presented by the infographic in the research sample.   The researcher used the survey method, specifically the survey, by using the content analysis method to analyze the infographic material from the sample selected from the press and news sites that are the subject of the research, based on the method of what was said? How was it said? The researcher relied on the intentional sample, and this sample depends on the researcher selecting the vocabulary of the sample based on experiences and evaluating the c

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 27 2023
Journal Name
Applied Sciences
Comparison of ML/DL Approaches for Detecting DDoS Attacks in SDN
...Show More Authors

Software-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an

... Show More
View Publication
Scopus (36)
Crossref (37)
Scopus Clarivate Crossref
Publication Date
Fri Sep 22 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Expermental Comparison For The Performance of Circular And Square Solar Cell
...Show More Authors

An    Experimental     comparison     between     the     current-voltage

characteristic and    the  efficiency    conversion from  solar  to  electric energy   were studied  for square  and circular  single crystal  silicon  solar

cell of equal area (35.28  cm2)  . The results show  that the solar shape is

an  important factor  in  calculating the  current-voltage characteristics and  efficiency of  the  solar  cell.  It was  shown   that  the  performance effici

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Comparison of Faster R-CNN and YOLOv5 for Overlapping Objects Recognition
...Show More Authors

Classifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area.  The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (13)
Scopus Crossref