Preferred Language
Articles
/
XhbHT4oBVTCNdQwCnJQB
“Impress of rotation and an inclined MHD on waveform motion of the non-Newtonian fluid through porous canal”
...Show More Authors
Abstract<p>Waveform flow of non-Newtonian fluid through a porous medium of the non-symmetric sloping canal under the effect of rotation and magnetic force, which has applied by the inclined way, have studied analytically and computed numerically. Slip boundary conditions on velocity distribution and stream function are used. We have taken the influence of heat and mass transfer in the consideration in our study. We carried out the mathematical model by using the presumption of low Reynolds number and small wave number. The resulting equations of motion, which are representing by the velocity profile and stream function distribution, solved by using the method of a domain decomposition analysis and we obtained the exact solutions of velocity, temperature, and concentration. The expressions of velocity, temperature, and concentration of the particles of the fluid have obtained and examined graphically by utilizing the soft wave of the Mathematica program. The efforts of various variables on mathematical modeling of motion and energy are discussed in detail. We found that.</p>
Scopus Crossref
View Publication
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
Peristaltic Flow with Nanofluid under Effects of Heat Source, and Inclined Magnetic Field in the Tapered Asymmetric Channel through a Porous Medium
...Show More Authors

     In this present paper , a special model was built to govern the equations of  two dimensional peristaltic transport to nanofluid  flow of a heat source in a tapered  considered in an asymmetric channel. The equations of dimensionless temperature concentration are analytical solve under assumption slow Reynolds number and long wave length. Furthermore, the results that receive by expressing the maximum pressure rise  communicates increased in case of  non-Newtonian fluid when equated with Newtonian fluid. Finally, MATHEMATICA  11 program has been used to solve such system after obtaining the initial conditions.  Most of the results  of drawing  for many are obtained via above program .

View Publication Preview PDF
Scopus (4)
Scopus Crossref
Publication Date
Sun Jul 02 2023
Journal Name
Iraqi Journal Of Science
Peristaltic Transport of a Viscoelastic Fluid with Fractional Maxwell Model in an Inclined Channel
...Show More Authors

This paper is devoted to the study of the peristaltic transport of viscoelastic non-Newtonian fluids with fractional Maxwell model in an inclined channel. Approximate analytical solutions have been constructed using Adomain decomposition method under the assumption of long wave boundary layer type approximation and low Reynolds number. The effect of each of relaxation time, fractional parameters, Reynolds number, Froude number, inclination of channel and amplitude on the pressure difference, friction force and stream function along one wavelength are received and analyzed.

View Publication Preview PDF
Publication Date
Sun Oct 22 2023
Journal Name
Iraqi Journal Of Science
Peristaltic Transport of a Viscoelastic Fluid with Fractional Maxwell Model in an Inclined Channel
...Show More Authors

This paper is devoted to the study of the peristaltic transport of viscoelastic non-Newtonian fluids with fractional Maxwell model in an inclined channel. Approximate analytical solutions have been constructed using Adomain decomposition method under the assumption of long wave boundary layer type approximation and low Reynolds number. The effect of each of relaxation time, fractional parameters, Reynolds number, Froude number, inclination of channel and amplitude on the pressure difference, friction force and stream function along one wavelength are received and analyzed.

View Publication Preview PDF
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Effect of Mhd on Accelerated Flows of A Viscoelastic Fluid with The Fractional Burgers’ Model
...Show More Authors

In this paper, we studied the effect of magnetic hydrodynamic (MHD) on accelerated flows of a viscoelastic fluid with the fractional Burgers’ model. The velocity field of the flow is described by a fractional partial differential equation of fractional order by using Fourier sine transform and Laplace transform, an exact solutions for the velocity distribution are obtained for the following two problems: flow induced by constantly accelerating plate, and flow induced by variable accelerated plate. These solutions, presented under integral and series forms in terms of the generalized Mittag-Leffler function, are presented as the sum of two terms. The first term, represent the velocity field corresponding to a Newtonian fluid, and the se

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 01 2014
Journal Name
Int. J. Mod. Eng. Res
Exact solutions for MHD flow of a viscoelastic fluid with the fractional Burgers’ model in an annular pipe
...Show More Authors

This paper presents an analytical study for the magnetohydrodynamic (MHD) flow of a generalized Burgers’ fluid in an annular pipe. Closed from solutions for velocity is obtained by using finite Hankel transform and discrete Laplace transform of the sequential fractional derivatives. Finally, the figures are plotted to show the effects of different parameters on the velocity profile.

View Publication
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Influence of Varying Temperature and Concentration on Magnetohydrodynamics Peristaltic Transport for Jeffrey Fluid with a Nanoparticles Phenomenon through a Rectangular Porous Duct
...Show More Authors

A mathematical model constructed to study the combined effects of the concentration and the thermodiffusion on the nanoparticles of a Jeffrey fluid with a magnetic field effect the process of containing waves in a three-dimensional rectangular porous medium canal. Using the HPM to solve the nonlinear and coupled partial differential equations. Numerical results were obtained for temperature distribution, nanoparticles concentration, velocity, pressure rise, pressure gradient, friction force and stream function. Through the graphs, it was found that the velocity of fluid rises with the increase of a mean rate of volume flow and a magnetic parameter, while the velocity goes down with the increasing a Darcy number and lateral walls. Also, t

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Wed Jan 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Hall and Joule's heating Influences on Peristaltic Transport of Bingham plastic Fluid with Variable Viscosity in an Inclined Tapered Asymmetric Channel
...Show More Authors

   This paper presents an investigation of peristaltic flow of Bingham plastic fluid in an inclined tapered asymmetric channel with variable viscosity. Taken into consideration Hall current, velocity, thermal slip conditions, Energy equation is modeled by taking Joule heating effect into consideration and by holding assumption of long wavelength and low Reynolds number approximation these equations simplified into couple of non-linear ordinary differential equations that solved using perturbation technique. Graphical analysis has been involved for various flow parameters emerging in the problem. We observed two opposite behaviors for Hall parameter and Hartman number on velocity axial and temperature curves.

View Publication Preview PDF
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
Studying the Magnetohydrodynamics for Williamson Fluid with Varying Temperature and Concentration in an Inclined Channel with Variable Viscosity
...Show More Authors

        In this paper, the Magnetohydrodynamic (MHD) for Williamson fluid with varying temperature and concentration in an inclined channel with variable viscosity has been examined. The perturbation technique in terms of the Weissenberg number  to obtain explicit forms for the velocity field has been used. All the solutions of physical parameters of the Darcy parameter , Reynolds number , Peclet number  and Magnetic parameter  are discussed under the different values as shown in plots.

View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Sun Sep 01 2019
Journal Name
Baghdad Science Journal
The Effect of MHD on a Longitudinal Flow of a Fractional Maxwell Fluid between Two Coaxial Cylinders
...Show More Authors

      In this paper fractional Maxwell fluid equation has been solved. The solution is in the Mettag-Leffler form. For  the corresponding solutions for ordinary Maxwell fluid are obtained as limiting case of general solutions. Finally, the effects of different parameters on the velocity and shear stress profile are analyzed through plotting the velocity and shear stress profile.

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Tue Jul 01 2014
Journal Name
Int. J. Eng. Ra
Pressure Gradient Influence on MHD Flow for Generalized Burgers’ Fluid with Slip Condition
...Show More Authors

This paper presents a research for magnetohydrodynamic (MHD) flow of an incompressible generalized Burgers’ fluid including by an accelerating plate and flowing under the action of pressure gradient. Where the no – slip assumption between the wall and the fluid is no longer valid. The fractional calculus approach is introduced to establish the constitutive relationship of the generalized Burgers’ fluid. By using the discrete Laplace transform of the sequential fractional derivatives, a closed form solutions for the velocity and shear stress are obtained in terms of Fox H- function for the following two problems: (i) flow due to a constant pressure gradient, and (ii) flow due to due to a sinusoidal pressure gradient. The solutions for

... Show More
View Publication