Waveform flow of non-Newtonian fluid through a porous medium of the non-symmetric sloping canal under the effect of rotation and magnetic force, which has applied by the inclined way, have studied analytically and computed numerically. Slip boundary conditions on velocity distribution and stream function are used. We have taken the influence of heat and mass transfer in the consideration in our study. We carried out the mathematical model by using the presumption of low Reynolds number and small wave number. The resulting equations of motion, which are representing by the velocity profile and stream function distribution, solved by using the method of a domain decomposition analysis and we obtained the exact solutions of velocity, temperature, and concentration. The expressions of velocity, temperature, and concentration of the particles of the fluid have obtained and examined graphically by utilizing the soft wave of the Mathematica program. The efforts of various variables on mathematical modeling of motion and energy are discussed in detail. We found that.
In the present work, steady two – dimensional laminar natural convection heat transfer of Newtonian and non-Newtonian fluids inside isosceles triangular enclosure has been analyzed numerically for a wide range of the modified Rayleigh numbers of (103 ≤ Ra ≤ 105), with non-dimensional parameter (NE) of Prandtl – Eyring model ranging from (0 to 10), and modified Prandtl number take in the range (Pr* =1,10, and 100). Two types of boundary conditions have been considered. The first, when the inclined walls are heated with different uniform temperatures and the lower wall is insulated. The second, when the bottom wall is heated by applying a uniform heat flux while the inclined walls at
... Show MoreThe aim of this work presents the analytical studies of both the magnetohydrodynamic (MHD) flux and flow of the non-magnetohydro dynamic (MHD) for a fluid of generalized Burgers’ (GB) withinan annular pipe submitted under Sinusoidal Pressure (SP)gradient. Closed beginning velocity's' solutions are taken by performing the finite Hankel transform (FHT) and Laplace transform (LT) of the successivefraction derivatives. Lastly, the figures were planned to exhibition the transformations effects of different fractional parameters (DFP) on the profile of velocity of both flows.
The present study analyzes the effect of couple stress fluid (CSF) with the activity of connected inclined magnetic field (IMF) of a non-uniform channel (NUC) through a porous medium (PM), taking into account the sliding speed effect on channel walls and the effect of nonlinear particle size, applying long wavelength and low Reynolds count estimates. The mathematical expressions of axial velocity, stream function, mechanical effect and increase in pressure have been analytically determined. The effect of the physical parameter is included in the present model in the computational results. The results of this algorithm have been presented in chart form by applying the mathematical program.
Waveform transport of Pseudo plastic fluid in complaint symmetric channel with culvature properties has designed. The efforts of magnetic force, which has applied by radiate direction in the analysis, is considered by using the influence of Hartmann number. Walls properties with slip conditions on velocity distribution as well as stream function are used. The analysis of" heat and mass transfer" has taken into account. More popularized factual constraints known by the convective conditions are applied. The partial differential equations of motion, temperature and concentration is reduced under the simulation of low quantity of wave number and Reynolds number and then transformed to or
This paper presents an analytical study for the magnetohydrodynamic (MHD) flow of a generalized Burgers’ fluid in an annular pipe. Closed from solutions for velocity is obtained by using finite Hankel transform and discrete Laplace transform of the sequential fractional derivatives. Finally, the figures are plotted to show the effects of different parameters on the velocity profile.
In this paper fractional Maxwell fluid equation has been solved. The solution is in the Mettag-Leffler form. For the corresponding solutions for ordinary Maxwell fluid are obtained as limiting case of general solutions. Finally, the effects of different parameters on the velocity and shear stress profile are analyzed through plotting the velocity and shear stress profile.
This paper presents a research for magnetohydrodynamic (MHD) flow of an incompressible generalized Burgers’ fluid including by an accelerating plate and flowing under the action of pressure gradient. Where the no – slip assumption between the wall and the fluid is no longer valid. The fractional calculus approach is introduced to establish the constitutive relationship of the generalized Burgers’ fluid. By using the discrete Laplace transform of the sequential fractional derivatives, a closed form solutions for the velocity and shear stress are obtained in terms of Fox H- function for the following two problems: (i) flow due to a constant pressure gradient, and (ii) flow due to due to a sinusoidal pressure gradient. The solutions for
... Show MoreA mathematical model constructed to study the combined effects of the concentration and the thermodiffusion on the nanoparticles of a Jeffrey fluid with a magnetic field effect the process of containing waves in a three-dimensional rectangular porous medium canal. Using the HPM to solve the nonlinear and coupled partial differential equations. Numerical results were obtained for temperature distribution, nanoparticles concentration, velocity, pressure rise, pressure gradient, friction force and stream function. Through the graphs, it was found that the velocity of fluid rises with the increase of a mean rate of volume flow and a magnetic parameter, while the velocity goes down with the increasing a Darcy number and lateral walls. Also, t
... Show MoreThis paper presents an investigation of peristaltic flow of Bingham plastic fluid in an inclined tapered asymmetric channel with variable viscosity. Taken into consideration Hall current, velocity, thermal slip conditions, Energy equation is modeled by taking Joule heating effect into consideration and by holding assumption of long wavelength and low Reynolds number approximation these equations simplified into couple of non-linear ordinary differential equations that solved using perturbation technique. Graphical analysis has been involved for various flow parameters emerging in the problem. We observed two opposite behaviors for Hall parameter and Hartman number on velocity axial and temperature curves.
In this paper, the Magnetohydrodynamic (MHD) for Williamson fluid with varying temperature and concentration in an inclined channel with variable viscosity has been examined. The perturbation technique in terms of the Weissenberg number to obtain explicit forms for the velocity field has been used. All the solutions of physical parameters of the Darcy parameter , Reynolds number , Peclet number and Magnetic parameter are discussed under the different values as shown in plots.