In this paper, the probabilistic behavior of plain concrete beams subjected to flexure is studied using a continuous mesoscale model. The model is two-dimensional where aggregate and mortar are treated as separate constituents having their own characteristic properties. The aggregate is represented as ellipses and generated under prescribed grading curves. Ellipses are randomly placed so it requires probabilistic analysis for model using the Monte Carlo simulation with 20 realizations to represent geometry uncertainty. The nonlinear behavior is simulated with an isotropic damage model for the mortar, while the aggregate is assumed to be elastic. The isotropic damage model softening behavior is defined in terms of fracture mechanics parameters. This damage model is compared with the fixed crack model in macroscale study before using it in the mesoscale model. Then, it is used in the mesoscale model to simulate flexure test and compared to experimental data and shows a good agreement. The probabilistic behavior of the model response is presented through the standard deviation, moment parameters and cumulative probability density functions in different loading stages. It shows variation of the probabilistic characteristics between pre-peak and post-peak behaviour of load-CMOD curves.
The aim of this research is to identify the availability of visual thinking skills in the chemistry textbook scheduled for the third intermediate grade for the academic year (2020-2021) in the Republic of Iraq. The study sample consisted of all (85) images contained in the chemistry course for the third intermediate grade, which are (85) form using the curriculum. Analytical descriptive A list of visual thinking skills was prepared, and the unit of form was adopted as a unit of analysis and repetition as a unit of counting, and frequencies and percentages were used for statistical treatment, and validity and reliability were calculated. And using the Holste equation. The following results were reached: The skill
... Show MoreA mathematical model is developed to discuss the impact of the Hall current and the Joule heating on the peristaltic flux of finitely extensible nonlinear elastic Peterlin (FENE-P) fluid in a tapered tube with mild stenosis. The fluid movement along the wall surface resulted from the sinusoidal wave flowing with constant speed. Conditions of velocity and thermal slip are applied. Lubrication approximation is adopted to modify the governing flow problem. To discover the solution to a system of equations, the regular perturbation approach is used. The effects of the different physical parameters are debated and graphically shown in a set of figures. It is discovered that as the Hall current parameter is increased and the Hartman n
... Show MoreThe depth conversion process is a significant task in seismic interpretation to establish the link between the seismic data in the time domain and the drilled wells in the depth domain. To promote the exploration and development of the Subba oilfield, more accurate depth conversion is required. In this paper, three approaches of depth conversions: Models 1, 2, and 3 are applied from the simplest to the most complex on Nahr Umr Reservoir in Suba oilfield. This is to obtain the best approach, giving less mistakes with the actual depth at well locations and good inter/extrapolation between or away from well controls. The results of these approaches, together with the uncertainty analysis provide a reliable velocity model
... Show MorePrevious experimental studies have suggested that hot mixed asphalt (HMA) concrete using hydrated lime (HL) to partially replace the conventional limestone dust filler at 2.5% by the total weight of all aggregates showed an optimum improvement on several key mechanical properties, fatigue life span and moisture susceptibility. However, so far, the knowledge of the thermal response of the modified asphalt concrete and thermal influence on the durability of the pavement constructed are still relatively limited but important to inform pavement design. This paper, at first, reports an experimental study of the tensile fatigue life of HMA concrete mixes designed for wearing layer application. Tests were conducted under three different temperatur
... Show MoreIn this research, experimental and numerical studies were carried out to investigate the performance of encased glass-fiber-reinforced polymer (GFRP) beams under fire. The test specimens were divided into two peer groups to be tested under the effect of ambient and elevated temperatures. The first group was statically tested to investigate the monotonic behavior of the specimens. The second group was exposed to fire loading first and then statically tested to explore the residual behavior of the burned specimens. Adding shear connectors and web stiffeners to the GFRP beam was the main parameter in this investigation. Moreover, service loads were applied to the tested beams during the fire. Utilizing shear connectors, web stiffeners,
... Show MoreIn this study, the effect of glass fiber reinforced polymer (GFRP) section and compressive strength of concrete in composite beams under static and low velocity impact loads was examined. Modeling was performed and the obtained results were compared with the test results and their compatibility was evaluated. Experimental tests of four composite beams were carried out, where two of them are control specimen with 20 MPa compressive strength of concrete deck slab and 50 MPa for other. Bending characteristics were affected by the strength of concrete under impact loading case, as it increased maximum impact force and damping time at a ratio of 59% and reduced the damping ratio by 47% compared to the reference hybrid beam. Under stat
... Show MoreThe finite element method has been used in this paper to investigate the behavior of precast reinforced concrete dapped-ends beams (DEBs) numerically. A parametric investigation was performed on an experimental specimen tested by a previous researcher to show the effect of numerous parameters on the strength and behavior of RC dapped-end beams. Reinforcement details and steel arrangement, the influence of concrete compressive strength, the effect of inclined load, and the effect of support settlement on the strength of dapped-ends beams are examples of such parameters. The results revealed that the dapped-end reinforcement arrangement greatly affects the behavior of dapped end beam. The failure load decreases by 25% when
... Show More