Preferred Language
Articles
/
WxfV0IwBVTCNdQwC9wgF
A Novel Application of Deep Learning (Convolutional Neural Network) for Traumatic Spinal Cord Injury Classification Using Automatically Learned Features of EMG Signal
...Show More Authors

In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesion from five Macaca fasicularis monkeys. The proposed classifier is based on a CNN using filtered segmented EMG signals from the pre- and post-lesion periods as inputs, while the kNN is designed using four hand-crafted EMG features. The results suggest that the CNN provides a promising classification technique for TSCI, compared to conventional machine learning classification. The kNN with hand-crafted EMG features classified the pre- and post-lesion EMG data with an F-measure of 89.7% and 92.7% for the left- and right-side muscles, respectively, while the CNN with the EMG segments classified the data with an F-measure of 89.8% and 96.9% for the left- and right-side muscles, respectively. Finally, the proposed deep learning classification model (CNN), with its learning ability of high-level features using EMG segments as inputs, shows high potential and promising results for use as a TSCI classification system. Future studies can confirm this finding by considering more subjects.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun May 11 2025
Journal Name
Journal Of Information Systems Engineering And Management
The Effect of the Learning Mastery Strategy using Interactive Learning Techniques as a Therapeutic Method on the Achievement of Secondary School Students in Mathematics
...Show More Authors

  The current research aims to identify the effect of the learning mastery strategy using interactive learning as a therapeutic method on the achievement of secondary school students in mathematics. To achieve the research objective, the researcher selected second-grade middle school students at Al-Haybah Intermediate School for Boys and determined his research sample, which consisted of (77) students distributed into two sections: Section (A) the experimental group, with (38) students, and Section (B) the control group, with (39) students. The statistical equivalence of the two research sample groups was confirmed in the variables (intelligence test, previous achievement, and previous knowledge test). The researchers chose the par

... Show More
View Publication
Crossref
Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Human Face Recognition Using Wavelet Network
...Show More Authors

 

            This paper presents a study of wavelet self-organizing maps (WSOM) for face recognition. The WSOM is a feed forward network that estimates optimized wavelet based for the discrete wavelet transform (DWT) on the basis of the distribution of the input data, where wavelet basis transforms are used as activation function.

 

 

View Publication Preview PDF
Publication Date
Tue Feb 21 2017
Journal Name
Biomechanics And Modeling In Mechanobiology
A novel method for non-invasively detecting the severity and location of aortic aneurysms
...Show More Authors

The influence of an aortic aneurysm on blood flow waveforms is well established, but how to exploit this link for diagnostic purposes still remains challenging. This work uses a combination of experimental and computational modelling to study how aneurysms of various size affect the waveforms. Experimental studies are carried out on fusiform-type aneurysm models, and a comparison of results with those from a one-dimensional fluid–structure interaction model shows close agreement. Further mathematical analysis of these results allows the definition of several indicators that characterize the impact of an aneurysm on waveforms. These indicators are then further studied in a computational model of a systemic blood flow network. This demonstr

... Show More
View Publication Preview PDF
Scopus (34)
Crossref (33)
Scopus Clarivate Crossref
Publication Date
Sat Jun 30 2012
Journal Name
Al-kindy College Medical Journal
Prothrombin Time role in Head Injury & Intracranial Hematomas, A prospective Study of 325 cases
...Show More Authors

Objective: Aimed to asses the role of PT estimation in early diagnosis and predicting the extent and the outcome of head injury with ICerH and/ or Contusion
Method :PT was measured by Digiclot 818
Group –1: One hundred consecutive head injured patients admitted at Neurosurgical and Al Ramadi teaching hospitals were initially estimated for prothrombin time and subsequently scanned
Group-2 : Two hundred twenty five consecutive non scanned head injured patients admitted to Neurosurgical and Al Ramadi teaching hospitals were estimated with prothrombin time at the time of insult and subsequently for the next two weeks Al – Kindy Col Med J 2012; Vol. 8 No. 1 P: 54
Clinical and neurological evaluation (GCS) score in addition to

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 09 2021
Journal Name
International Journal Of Environmental Science And Technology
Water quality index toward a reliable assessment for water supply uses: a novel approach
...Show More Authors

View Publication
Scopus (16)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Tue Dec 27 2022
Journal Name
2022 3rd Information Technology To Enhance E-learning And Other Application (it-ela)
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att

... Show More
View Publication
Scopus (6)
Crossref (5)
Scopus Crossref
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Discrete Mathematical Sciences And Cryptography
Minimum spanning tree application in Covid-19 network structure analysis in the countries of the Middle East
...Show More Authors

Coronavirus disease (Covid-19) has threatened human life, so it has become necessary to study this disease from many aspects. This study aims to identify the nature of the effect of interdependence between these countries and the impact of each other on each other by designating these countries as heads for the proposed graph and measuring the distance between them using the ultrametric spanning tree. In this paper, a network of countries in the Middle East is described using the tools of graph theory.

View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Jul 10 2019
Journal Name
Pakistan Journal Of Medical Sciences
Maternal and cord blood prolactin level and pregnancy complications
...Show More Authors

Objectives: To explore the correlation between maternal and cord blood prolactin, the correlation between cord prolactin and birth weight, and to compare cord blood prolactin in new-borns of women with normal pregnancy and women with pregnancy complications namely; gestational hypertension, gestational diabetes and preterm labour.Methods: This study was performed from September to December 2018. Thirty-two women, delivered at Baghdad teaching hospital, and their newborns (32) were included. Maternal blood (5 ml) was taken before labour and cord blood (5 ml) was collected after placenta expulsion. Maternal and cord blood prolactin were analysed using fluorescence immunoassay. Results: Cord blood prolactin was higher in babies b

... Show More
View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Digital Signal Processing
Reverberant signal separation using optimized complex sparse nonnegative tensor deconvolution on spectral covariance matrix
...Show More Authors

View Publication
Scopus (9)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Mon Dec 28 2020
Journal Name
International Journal Of Psychosocial Rehabilitation
Predicting the Sporting Achievement in the Pole Vault for Men Using Artificial Neural Networks
...Show More Authors

The physical sports sector in Iraq suffers from the problem of achieving sports achievements in individual and team games in various Asian and international competitions, for many reasons, including the lack of exploitation of modern, accurate and flexible technologies and means, especially in the field of information technology, especially the technology of artificial neural networks. The main goal of this study is to build an intelligent mathematical model to predict sport achievement in pole vaulting for men, the methodology of the research included the use of five variables as inputs to the neural network, which are Avarage of Speed (m/sec in Before distance 05 meters latest and Distance 05 meters latest, The maximum speed achieved in t

... Show More
View Publication Preview PDF