Sodium adsorption ratio (SAR) is considered as a measure of the water suitability for irrigation usage. This study examines the effect of the physicochemical parameters on water quality and SAR, which included Calcium(Ca+2), Magnesium(Mg+2), Sodium (Na+), Potassium (K), Chloride (Cl-), Sulfate(SO4-2), Carbonate (CO3-2), Bicarbonate (HCO3-), Nitrate (NO3-), Total Hardness (TH), Total Dissolved Salts (TDS), Electrical Conductivity (EC), degree of reaction (DR), Boron (B) and the monthly and annually flow discharge (Q). The water samples were collected from three stations across the Tigris River in Iraq, which flows through Samarra city (upstream), Baghdad city (central) and the end of Kut city (downstream) for the periods of 2016-2018. Results showed that the water quality of the Tigris River water is within the world health organization (WHO) specifications for drinking water except for Sulfate concentration. An artificial neural network (ANN) was used to develop the model for the three locations to predict SAR. The sum of the squared error function and the coefficient of determination (R2) were used to evaluate the amount of error in predicting values of SAR and performance evaluation of the model. The results showed that the highest value of the coefficient of determination was 0.992, 0.986, and 0.955 for Samarra, Baghdad, and Kut, respectively and the ANN analysis indicated that the prediction of SAR was effected by Sodium for three stations. Thus, the ANN model has been found to provide SAR prediction tool that can be used effectively to describe the suitability of river water quality for irrigation purposes.
Finger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network
... Show MoreZiegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventio
... Show MoreSludge worm samples were collected from the Tigers River sediment during the period from November 2018 to June 2019 in Al Sarafiya District/ Baghdad- Iraq. Biometric morphological measurements focusing on the form of penis sheath and chaetal morphology were used for species identification, in addition to molecular analysis by amplification of conserved 18s rRNA encoding gene using ITS1 and ITS4 universal primers.According to the morphological measurement records, the results revealed the existence of Limnodrilus hoffmeisteri Claparede 1862, L. claparedeianus Ratzel, 1868 and L. cervix Brinkhurst 1963. Other two groups of specimens, with short penis sheath, were identified by molecular technology as L
Differences in transversal sections and activities of geomorphological operations led to forming geomorphological shapes as river turns and river isles in watercourse in the area of study. The study showed three river turns that are Sindia turn with length 4723m, turn wave 3599 average width 267.6, Zanbour turn length 11374m, turn wave 7110 average width 307.5m,and Dojama turn with length 5876m, turn wave 4982m average width 313.4m. This difference is caused by the activity of erosion and sedimentation that led to the appearance of the length rivers turn.
The study showed that the turn of Dojama is the only corresponding turn, whereas the phenomena of corresponding never appeared in other turns in the area of study. The study also sho
A total of 20 raw milk samples were used as the fouling agent for evaluating the bacteriological effectiveness of cleaning and sanitizing of domestic milking equipment by using ozonated water at 0.5 ppm comparing to the warm water at 55! for 5 minutes respectively. The mean values of total aerobic bacteria, Coliform and E.coli that present on the plastic and stainless-steel containers after using the raw milk as fouling agent were 3.4×10-6 , 6.7x10-5 and 5.8×10-3 cfu/cm2 respectively , after cleaning the stainless steel containers by the ozonated water the mean values of total aerobic bacterial counts, Coliforms and E.coli bacteria were reduced to 1.2×10-6, 4.7×10-5 and 3.3×10-3 CFU/cm2 respectively. while after cleaning by the warm wa
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreSegmented regression consists of several sections separated by different points of membership, showing the heterogeneity arising from the process of separating the segments within the research sample. This research is concerned with estimating the location of the change point between segments and estimating model parameters, and proposing a robust estimation method and compare it with some other methods that used in the segmented regression. One of the traditional methods (Muggeo method) has been used to find the maximum likelihood estimator in an iterative approach for the model and the change point as well. Moreover, a robust estimation method (IRW method) has used which depends on the use of the robust M-estimator technique in
... Show MoreThe aim of this paper, is to design multilayer Feed Forward Neural Network(FFNN)to find the approximate solution of the second order linear Volterraintegro-differential equations with boundary conditions. The designer utilized to reduce the computation of solution, computationally attractive, and the applications are demonstrated through illustrative examples.